Organic cation transporters (OCTs) and novel organic cation transporters (OCTNs) are responsible for drug delivery in the intestine and kidney; in the lung, OCTs mediate inhaled drugs' transport, although their physiological role in airways remains poorly understood. The studies addressing OCTs/OCTNs in human airways were mostly performed in immortal or transformed cell lines; here, we studied OCTs in EpiAirway, a recently developed in vitro model of normal bronchial epithelium. Calu-3 monolayers were used for comparison. The activity of OCTs was evaluated by measuring the uptake of 1-methyl-4-phenylpyridinium (MPP+) at the apical and basolateral side of monolayers and protein expression through Western Blot analysis. OCTs and OCTNs expression, along with that of Amino acid Transporter B0,+ (ATB0,+)transporter, was determined by measuring the number of mRNA molecules through quantitative Polymerase Chain Reaction (qPCR). The interaction of the transporters with bronchodilators was also assessed. Results highlight significant differences between Calu-3 cells and EpiAirway, since, in the latter, OCTs are active only on the basolateral membrane where they interact with the bronchodilator ipratropium. No activity of OCTs is detectable at the apical side; there, the most abundant carrier is, instead, SLC6A14/ATB0,+, that can thus be potentially listed among organic cation transporters responsible for drug delivery in the lung.

Organic cation transporters (OCTs) in EpiAirway™, a cellular model of normal human bronchial epithelium / Barilli, A.; Visigalli, R.; Ferrari, F.; Di Lascia, M.; Riccardi, B.; Puccini, P.; Dall'Asta, V.; Rotoli, B. M.. - In: BIOMEDICINES. - ISSN 2227-9059. - 8:5(2020), p. 127. [10.3390/BIOMEDICINES8050127]

Organic cation transporters (OCTs) in EpiAirway™, a cellular model of normal human bronchial epithelium

Barilli A.;Visigalli R.;Ferrari F.;Dall'Asta V.;Rotoli B. M.
2020

Abstract

Organic cation transporters (OCTs) and novel organic cation transporters (OCTNs) are responsible for drug delivery in the intestine and kidney; in the lung, OCTs mediate inhaled drugs' transport, although their physiological role in airways remains poorly understood. The studies addressing OCTs/OCTNs in human airways were mostly performed in immortal or transformed cell lines; here, we studied OCTs in EpiAirway, a recently developed in vitro model of normal bronchial epithelium. Calu-3 monolayers were used for comparison. The activity of OCTs was evaluated by measuring the uptake of 1-methyl-4-phenylpyridinium (MPP+) at the apical and basolateral side of monolayers and protein expression through Western Blot analysis. OCTs and OCTNs expression, along with that of Amino acid Transporter B0,+ (ATB0,+)transporter, was determined by measuring the number of mRNA molecules through quantitative Polymerase Chain Reaction (qPCR). The interaction of the transporters with bronchodilators was also assessed. Results highlight significant differences between Calu-3 cells and EpiAirway, since, in the latter, OCTs are active only on the basolateral membrane where they interact with the bronchodilator ipratropium. No activity of OCTs is detectable at the apical side; there, the most abundant carrier is, instead, SLC6A14/ATB0,+, that can thus be potentially listed among organic cation transporters responsible for drug delivery in the lung.
Organic cation transporters (OCTs) in EpiAirway™, a cellular model of normal human bronchial epithelium / Barilli, A.; Visigalli, R.; Ferrari, F.; Di Lascia, M.; Riccardi, B.; Puccini, P.; Dall'Asta, V.; Rotoli, B. M.. - In: BIOMEDICINES. - ISSN 2227-9059. - 8:5(2020), p. 127. [10.3390/BIOMEDICINES8050127]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2878420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact