The work presents a robust approach to labor share analysis. The estimate of labor share presents various complexities related to the nature of the data sets to be analyzed. Typically, labor share is evaluated by using discriminant analysis and linear or generalized linear models, that do not take into account the presence of possible outliers. Moreover, the variables to be considered are often characterized by a high dimensional structure. The proposed approach has the objective of improving the estimation of the model using robust multivariate regression techniques and data transformation.

Labor market analysis through transformations and robust multivariate models / Corbellini, Aldo; Magnani, Marco; Morelli, Gianluca. - In: SOCIO-ECONOMIC PLANNING SCIENCES. - ISSN 0038-0121. - 73:(2021), pp. 100826.1-100826.9. [10.1016/j.seps.2020.100826]

Labor market analysis through transformations and robust multivariate models

Corbellini, Aldo
;
Magnani, Marco;Morelli, Gianluca
2021-01-01

Abstract

The work presents a robust approach to labor share analysis. The estimate of labor share presents various complexities related to the nature of the data sets to be analyzed. Typically, labor share is evaluated by using discriminant analysis and linear or generalized linear models, that do not take into account the presence of possible outliers. Moreover, the variables to be considered are often characterized by a high dimensional structure. The proposed approach has the objective of improving the estimation of the model using robust multivariate regression techniques and data transformation.
2021
Labor market analysis through transformations and robust multivariate models / Corbellini, Aldo; Magnani, Marco; Morelli, Gianluca. - In: SOCIO-ECONOMIC PLANNING SCIENCES. - ISSN 0038-0121. - 73:(2021), pp. 100826.1-100826.9. [10.1016/j.seps.2020.100826]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0038012119305609-main.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 967.07 kB
Formato Adobe PDF
967.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2877864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact