Nowadays, the growing availability of renewable energy resources is an opportunity to reduce carbon emissions but also a challenge, as advanced control technologies are required. The new generation of smart district heating and cooling networks, for instance, pledges efficient energy distribution, flexibility and low-carbon energy integration. However, in the literature it is hard to find comprehensive frameworks for the integrated setup and testing of smart control strategies. This paper defines and demonstrates a framework that involves all steps of the controller development for small-scale district heating networks: from conceptualization to prototype testing. The innovative controller prototype, which relies on Model Predictive Control and aims to minimize operating costs and/or energy, is demonstrated in three original case studies, one in a simulation environment and two in real systems of different complexity in operational conditions. Compared to the control approaches previously adopted, based on predefined rules and operator experience, the smart solution achieves 6% reduction in cost and up to 34% reduction in energy consumption while meeting user requirements. The fast replicability of the proposed integrated methodology can foster the transition toward the next generation of smart heating networks.

Setup and testing of smart controllers for small-scale district heating networks: An integrated framework / De Lorenzi, A.; Gambarotta, A.; Morini, M.; Rossi, M.; Saletti, C.. - In: ENERGY. - ISSN 0360-5442. - 205:(2020), p. 118054. [10.1016/j.energy.2020.118054]

Setup and testing of smart controllers for small-scale district heating networks: An integrated framework

De Lorenzi A.;Gambarotta A.;Morini M.;Rossi M.;Saletti C.
2020-01-01

Abstract

Nowadays, the growing availability of renewable energy resources is an opportunity to reduce carbon emissions but also a challenge, as advanced control technologies are required. The new generation of smart district heating and cooling networks, for instance, pledges efficient energy distribution, flexibility and low-carbon energy integration. However, in the literature it is hard to find comprehensive frameworks for the integrated setup and testing of smart control strategies. This paper defines and demonstrates a framework that involves all steps of the controller development for small-scale district heating networks: from conceptualization to prototype testing. The innovative controller prototype, which relies on Model Predictive Control and aims to minimize operating costs and/or energy, is demonstrated in three original case studies, one in a simulation environment and two in real systems of different complexity in operational conditions. Compared to the control approaches previously adopted, based on predefined rules and operator experience, the smart solution achieves 6% reduction in cost and up to 34% reduction in energy consumption while meeting user requirements. The fast replicability of the proposed integrated methodology can foster the transition toward the next generation of smart heating networks.
2020
Setup and testing of smart controllers for small-scale district heating networks: An integrated framework / De Lorenzi, A.; Gambarotta, A.; Morini, M.; Rossi, M.; Saletti, C.. - In: ENERGY. - ISSN 0360-5442. - 205:(2020), p. 118054. [10.1016/j.energy.2020.118054]
File in questo prodotto:
File Dimensione Formato  
Articolo_Libreria_MPC_R1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri
1-s2.0-S0360544220311610-main.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2877662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 30
social impact