The difficulty in combining high fidelity with fast operation times and robustness against sources of noise is the central challenge of most quantum control problems, with immediate implications for the realization of quantum devices. We theoretically propose a protocol, based on the widespread stimulated Raman adiabatic passage technique, which achieves these objectives for quantum state transfers in generic three-level systems. Our protocol realizes accelerated adiabatic following through the application of additional control fields on the optical excitations. These act along frequency sidebands of the principal adiabatic pulses, dynamically counteracting undesired transitions. The scheme facilitates experimental control, not requiring new hardly-accessible resources. We show numerically that the method is efficient in a very wide set of control parameters, bringing the timescales closer to the quantum speed limit, also in the presence of environmental disturbance. These results hold for complete population transfers and for many applications, e.g., for realizing quantum gates, both for optical and microwave implementations. Furthermore, extensions to adiabatic passage problems in more-level systems are straightforward.

Optimized three-level quantum transfers based on frequency-modulated optical excitations / Petiziol, Francesco; Arimondo, Ennio; Giannelli, Luigi; Mintert, Florian; Wimberger, Sandro Marcel. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 10:(2020), p. 2185. [10.1038/s41598-020-59046-8]

Optimized three-level quantum transfers based on frequency-modulated optical excitations

Francesco Petiziol;Sandro Wimberger
2020-01-01

Abstract

The difficulty in combining high fidelity with fast operation times and robustness against sources of noise is the central challenge of most quantum control problems, with immediate implications for the realization of quantum devices. We theoretically propose a protocol, based on the widespread stimulated Raman adiabatic passage technique, which achieves these objectives for quantum state transfers in generic three-level systems. Our protocol realizes accelerated adiabatic following through the application of additional control fields on the optical excitations. These act along frequency sidebands of the principal adiabatic pulses, dynamically counteracting undesired transitions. The scheme facilitates experimental control, not requiring new hardly-accessible resources. We show numerically that the method is efficient in a very wide set of control parameters, bringing the timescales closer to the quantum speed limit, also in the presence of environmental disturbance. These results hold for complete population transfers and for many applications, e.g., for realizing quantum gates, both for optical and microwave implementations. Furthermore, extensions to adiabatic passage problems in more-level systems are straightforward.
2020
Optimized three-level quantum transfers based on frequency-modulated optical excitations / Petiziol, Francesco; Arimondo, Ennio; Giannelli, Luigi; Mintert, Florian; Wimberger, Sandro Marcel. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 10:(2020), p. 2185. [10.1038/s41598-020-59046-8]
File in questo prodotto:
File Dimensione Formato  
Petiziol_et_al-2020-Scientific_Reports.pdf

accesso aperto

Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 5.81 MB
Formato Adobe PDF
5.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2874769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact