We propose a decoding algorithm for tail-biting convolutional codes over phase noise channels. It can be seen as a reduced complexity approximation of maximum likelihood decoding. We target short blocks and extend the wrap-around Viterbi algorithm to trellises describing the random evolution of the phase impairment, for which we adopt two different models: a blockwise non-coherent and a blockwise Wiener channel model. Numerical results show that the performance of the proposed algorithm is within a few tenths of dB or less from maximum likelihood decoding for the setup studied in this letter.

Approximate ML Decoding of Short Convolutional Codes Over Phase Noise Channels / Gaudio, Lorenzo; Matuz, Balazs; Ninacs, Tudor; Colavolpe, Giulio; Vannucci, Armando. - In: IEEE COMMUNICATIONS LETTERS. - ISSN 1089-7798. - 24:2(2020), pp. 325-329. [10.1109/LCOMM.2019.2955730]

Approximate ML Decoding of Short Convolutional Codes Over Phase Noise Channels

Gaudio, Lorenzo;Colavolpe, Giulio;Vannucci, Armando
2020

Abstract

We propose a decoding algorithm for tail-biting convolutional codes over phase noise channels. It can be seen as a reduced complexity approximation of maximum likelihood decoding. We target short blocks and extend the wrap-around Viterbi algorithm to trellises describing the random evolution of the phase impairment, for which we adopt two different models: a blockwise non-coherent and a blockwise Wiener channel model. Numerical results show that the performance of the proposed algorithm is within a few tenths of dB or less from maximum likelihood decoding for the setup studied in this letter.
Approximate ML Decoding of Short Convolutional Codes Over Phase Noise Channels / Gaudio, Lorenzo; Matuz, Balazs; Ninacs, Tudor; Colavolpe, Giulio; Vannucci, Armando. - In: IEEE COMMUNICATIONS LETTERS. - ISSN 1089-7798. - 24:2(2020), pp. 325-329. [10.1109/LCOMM.2019.2955730]
File in questo prodotto:
File Dimensione Formato  
reprint.pdf

non disponibili

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 363.45 kB
Formato Adobe PDF
363.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CommL_ApproxML-DecShortCCoverPNchannels_REVIEW.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 279.9 kB
Formato Adobe PDF
279.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2872005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact