Myotendinous junction is the muscle-tendon interfacethrough which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 +/- 0.4 nm) with respect to the control group (43.9 +/- 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.
Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training / Curzi, D; Baldassarri, V; De Matteis, R; Salamanna, F; Bolotta, A; Frizziero, A; Fini, M; Marini, M; Falcieri, E. - In: HISTOLOGY AND HISTOPATHOLOGY. - ISSN 0213-3911. - 30:4(2015), pp. 465-472.
Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training
Frizziero A;
2015-01-01
Abstract
Myotendinous junction is the muscle-tendon interfacethrough which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 +/- 0.4 nm) with respect to the control group (43.9 +/- 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.