During recent years, the availability of innovative monitoring instrumentation has been a fundamental component in the development of efficient and reliable early warning systems (EWS). In fact, the potential to achieve high sampling frequencies, together with automatic data transmission and elaboration are key features for a near-real time approach. This paper presents a case study located in Central Italy, where the realization of an important state route required a series of preliminary surveys. The monitoring system installed on site included manual inclinometers, automatic modular underground monitoring system (MUMS) inclinometers, piezometers, and geognostic surveys. In particular, data recorded by innovative instrumentation allowed for the detection of major slope displacements that ultimately led to the landslide collapse. The implementation of advanced tools, featuring remote and automatic procedures for data sampling and elaboration, played a key role in the critical event identification and prediction. In fact, thanks to displacement data recorded by the MUMS inclinometer, it was possible to forecast the slope failure that was later confirmed during the following site inspection. Additionally, a numerical analysis was performed to better understand the mechanical behavior of the slope, back-analyze the monitored event, and to assess the stability conditions of the area of interest.
Innovative monitoring tools and early warning systems for risk management: A case study / Segalini, A.; Carri, A.; Valletta, A.; Martino, M.. - In: GEOSCIENCES. - ISSN 2076-3263. - 9:2(2019), p. 62. [10.3390/geosciences9020062]
Innovative monitoring tools and early warning systems for risk management: A case study
Segalini A.;Carri A.;Valletta A.;
2019-01-01
Abstract
During recent years, the availability of innovative monitoring instrumentation has been a fundamental component in the development of efficient and reliable early warning systems (EWS). In fact, the potential to achieve high sampling frequencies, together with automatic data transmission and elaboration are key features for a near-real time approach. This paper presents a case study located in Central Italy, where the realization of an important state route required a series of preliminary surveys. The monitoring system installed on site included manual inclinometers, automatic modular underground monitoring system (MUMS) inclinometers, piezometers, and geognostic surveys. In particular, data recorded by innovative instrumentation allowed for the detection of major slope displacements that ultimately led to the landslide collapse. The implementation of advanced tools, featuring remote and automatic procedures for data sampling and elaboration, played a key role in the critical event identification and prediction. In fact, thanks to displacement data recorded by the MUMS inclinometer, it was possible to forecast the slope failure that was later confirmed during the following site inspection. Additionally, a numerical analysis was performed to better understand the mechanical behavior of the slope, back-analyze the monitored event, and to assess the stability conditions of the area of interest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.