We continue our investigations on the average number of representations of a large positive integer as a sum of given powers of prime numbers. The average is taken over a "short" interval, whose admissible length depends on whether or not we assume the Riemann Hypothesis. © 2020 Adam Mickiewicz University Press. All rights reserved.

A note on an average additive problem with prime numbers / Cantarini, M.; Gambini, A.; Zaccagnini, A.. - In: FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI. - ISSN 0208-6573. - 63:2(2020), pp. 215-226. [10.7169/facm/1856]

A note on an average additive problem with prime numbers

A. Zaccagnini
2020-01-01

Abstract

We continue our investigations on the average number of representations of a large positive integer as a sum of given powers of prime numbers. The average is taken over a "short" interval, whose admissible length depends on whether or not we assume the Riemann Hypothesis. © 2020 Adam Mickiewicz University Press. All rights reserved.
2020
A note on an average additive problem with prime numbers / Cantarini, M.; Gambini, A.; Zaccagnini, A.. - In: FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI. - ISSN 0208-6573. - 63:2(2020), pp. 215-226. [10.7169/facm/1856]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2867937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact