Let $f$ be a meromorphic function with bounded set of singular values and for which infinity is a logarithmic singularity. Then we show that $f$ has infinitely many repelling periodic points for any minimal period $n\geq 1$, using a much simpler argument than the more general results for arbitrary entire transcendental functions.
A note on repelling periodic points for meromorphic functions with bounded set of singular values / Benini, A. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 32:1(2016), pp. 265-272. [10.4171/rmi/886]
A note on repelling periodic points for meromorphic functions with bounded set of singular values
Benini A
2016-01-01
Abstract
Let $f$ be a meromorphic function with bounded set of singular values and for which infinity is a logarithmic singularity. Then we show that $f$ has infinitely many repelling periodic points for any minimal period $n\geq 1$, using a much simpler argument than the more general results for arbitrary entire transcendental functions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.