A singular limit of a FitzHugh–Nagumo system leads to a nonlocal geometric variational problem with periodic boundary conditions. We study the stationary lamellar set and give a criterion to select out the one with the lowest energy. Such an optimal structure is called a minimal lamella. While the empty set or the full torus is a global minimizer for appropriate parameter regimes, the minimal lamellae beat both in other circumstances. The concept of minimal lamella points out that a preferred 1D mesh size is universal.

Minimal lamellar structures in a periodic FitzHugh–Nagumo system / Acerbi, E.; Chen, C. -N.; Choi, Y. -S.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 194(2019). [10.1016/j.na.2019.01.026]

Minimal lamellar structures in a periodic FitzHugh–Nagumo system

Acerbi E.
;
2019

Abstract

A singular limit of a FitzHugh–Nagumo system leads to a nonlocal geometric variational problem with periodic boundary conditions. We study the stationary lamellar set and give a criterion to select out the one with the lowest energy. Such an optimal structure is called a minimal lamella. While the empty set or the full torus is a global minimizer for appropriate parameter regimes, the minimal lamellae beat both in other circumstances. The concept of minimal lamella points out that a preferred 1D mesh size is universal.
File in questo prodotto:
File Dimensione Formato  
lamellarsolD.pdf

accesso aperto

Descrizione: preprint, sostanzialmente identico allo stampato (reperibile online)
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 338.12 kB
Formato Adobe PDF
338.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2867003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact