A singular limit of a FitzHugh–Nagumo system leads to a nonlocal geometric variational problem with periodic boundary conditions. We study the stationary lamellar set and give a criterion to select out the one with the lowest energy. Such an optimal structure is called a minimal lamella. While the empty set or the full torus is a global minimizer for appropriate parameter regimes, the minimal lamellae beat both in other circumstances. The concept of minimal lamella points out that a preferred 1D mesh size is universal.
Minimal lamellar structures in a periodic FitzHugh–Nagumo system / Acerbi, E.; Chen, C. -N.; Choi, Y. -S.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 194:(2019). [10.1016/j.na.2019.01.026]
Minimal lamellar structures in a periodic FitzHugh–Nagumo system
Acerbi E.
;
2019-01-01
Abstract
A singular limit of a FitzHugh–Nagumo system leads to a nonlocal geometric variational problem with periodic boundary conditions. We study the stationary lamellar set and give a criterion to select out the one with the lowest energy. Such an optimal structure is called a minimal lamella. While the empty set or the full torus is a global minimizer for appropriate parameter regimes, the minimal lamellae beat both in other circumstances. The concept of minimal lamella points out that a preferred 1D mesh size is universal.File | Dimensione | Formato | |
---|---|---|---|
lamellarsolD.pdf
accesso aperto
Descrizione: preprint, sostanzialmente identico allo stampato (reperibile online)
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
338.12 kB
Formato
Adobe PDF
|
338.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.