In fatigue design of welded joints, the Peak Stress Method (PSM) is an engineering, rapid, finite element-based tool to apply the notch stress intensity factor (NSIF) approach. The PSM presents some advantages, such as: (i) coarse meshes can be adopted, the required FE size being some orders of magnitude larger than that necessary to evaluate the NSIFs from the local stress distributions; (ii) only a single stress value is sufficient to estimate the NSIFs; (iii) 2D as well as 3D FE models can be used and (iv) the design engineer is able to determine the crack initiation point when competition between weld root and weld toe failure exists. Therefore the PSM may be a convenient design tool in the industry. In the present paper, new fatigue results have been generated by testing plate-to-tube welded steel details taken from industrial case studies under in-phase bending-torsion fatigue loadings. In particular, full-penetration joints adopted in the structure of a roundabout-type carousel and fillet-welded joints for quarter-turn scotch-yoke valve actuators have been tested. Experimental fatigue results have been analysed using the PSM, which proved to determine correctly the fatigue crack initiation location. Finally, a fairly good agreement has been obtained between the experimental results and the relevant PSM-based design curves.

Multiaxial fatigue assessment of welded steel details according to the peak stress method: Industrial case studies / Meneghetti, G.; Campagnolo, A.; Babini, V.; Riboli, M.; Spagnoli, A.. - In: INTERNATIONAL JOURNAL OF FATIGUE. - ISSN 0142-1123. - 125:(2019), pp. 362-380. [10.1016/j.ijfatigue.2019.04.014]

Multiaxial fatigue assessment of welded steel details according to the peak stress method: Industrial case studies

Spagnoli A.
2019-01-01

Abstract

In fatigue design of welded joints, the Peak Stress Method (PSM) is an engineering, rapid, finite element-based tool to apply the notch stress intensity factor (NSIF) approach. The PSM presents some advantages, such as: (i) coarse meshes can be adopted, the required FE size being some orders of magnitude larger than that necessary to evaluate the NSIFs from the local stress distributions; (ii) only a single stress value is sufficient to estimate the NSIFs; (iii) 2D as well as 3D FE models can be used and (iv) the design engineer is able to determine the crack initiation point when competition between weld root and weld toe failure exists. Therefore the PSM may be a convenient design tool in the industry. In the present paper, new fatigue results have been generated by testing plate-to-tube welded steel details taken from industrial case studies under in-phase bending-torsion fatigue loadings. In particular, full-penetration joints adopted in the structure of a roundabout-type carousel and fillet-welded joints for quarter-turn scotch-yoke valve actuators have been tested. Experimental fatigue results have been analysed using the PSM, which proved to determine correctly the fatigue crack initiation location. Finally, a fairly good agreement has been obtained between the experimental results and the relevant PSM-based design curves.
2019
Multiaxial fatigue assessment of welded steel details according to the peak stress method: Industrial case studies / Meneghetti, G.; Campagnolo, A.; Babini, V.; Riboli, M.; Spagnoli, A.. - In: INTERNATIONAL JOURNAL OF FATIGUE. - ISSN 0142-1123. - 125:(2019), pp. 362-380. [10.1016/j.ijfatigue.2019.04.014]
File in questo prodotto:
File Dimensione Formato  
ijfatigue 2019.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IJFATIGUE-S-19-00100-1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2866848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact