Overlapping genes represent an intriguing puzzle, as they encode two proteins whose ability to evolve is constrained by each other. Overlapping genes can undergo "symmetric evolution" (similar selection pressures on the two proteins) or "asymmetric evolution" (significantly different selection pressures on the two proteins). By sequence analysis of 75 pairs of homologous viral overlapping genes, I evaluated their accordance with one or the other model. Analysis of nucleotide and amino acid sequences revealed that half of overlaps undergo asymmetric evolution, as the protein from one frame shows a number of substitutions significantly higher than that of the protein from the other frame. Interestingly, the most variable protein (often known to interact with the host proteins) appeared to be encoded by the de novo frame in all cases examined. These findings suggest that overlapping genes, besides to increase the coding ability of viruses, are also a source of selective protein adaptation.

Asymmetric evolution in viral overlapping genes is a source of selective protein adaptation / Pavesi, A.. - In: VIROLOGY. - ISSN 0042-6822. - 532:(2019), pp. 39-47. [10.1016/j.virol.2019.03.017]

Asymmetric evolution in viral overlapping genes is a source of selective protein adaptation

Pavesi A.
2019-01-01

Abstract

Overlapping genes represent an intriguing puzzle, as they encode two proteins whose ability to evolve is constrained by each other. Overlapping genes can undergo "symmetric evolution" (similar selection pressures on the two proteins) or "asymmetric evolution" (significantly different selection pressures on the two proteins). By sequence analysis of 75 pairs of homologous viral overlapping genes, I evaluated their accordance with one or the other model. Analysis of nucleotide and amino acid sequences revealed that half of overlaps undergo asymmetric evolution, as the protein from one frame shows a number of substitutions significantly higher than that of the protein from the other frame. Interestingly, the most variable protein (often known to interact with the host proteins) appeared to be encoded by the de novo frame in all cases examined. These findings suggest that overlapping genes, besides to increase the coding ability of viruses, are also a source of selective protein adaptation.
2019
Asymmetric evolution in viral overlapping genes is a source of selective protein adaptation / Pavesi, A.. - In: VIROLOGY. - ISSN 0042-6822. - 532:(2019), pp. 39-47. [10.1016/j.virol.2019.03.017]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2866167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact