In this work, we report the results of a multidisciplinary study describing the structural architecture and diagenetic evolution of the Rocca di Neto extensional fault zone developed in poorly lithified sandstones of the Crotone Basin, Southern Italy. The studied fault zone has an estimated displacement of ∼90 m and consists of: (1) a low-deformation zone with subsidiary faults and widely spaced deformation bands; (2) an ∼10-mwide damage zone, characterized by a dense network of conjugate deformation bands; (3) an ∼3-m-wide mixed zone produced by tectonic mixing of sediments with different grain size; (4) an ∼1-m-wide fault core with bedding transposed into foliation and ultracomminute black gouge layers. Microstructural investigations indicate that particulate flow was the dominant early-stage deformation mechanism, while cataclasis became predominant after porosity loss, shallow burial, and selective calcite cementation. The combination of tectonic compaction and preferential cementation led to a strain-hardening behavior inducing the formation of “inclined conjugate deformation band sets” inside the damage zone, caused by the kinematic stress field associated with fault activity. Conversely, conjugate deformation band sets with a vertical bisector formed outside the damage zone in response to the regional extensional stress field. Stable isotope analysis helped in constraining the diagenetic environment of deformation, which is characterized by mixed marine-meteoric signature for cements hosted inside the damage zone, while it progressively becomes more meteoric moving outside the fault zone. This evidence supports the outward propagation of fault-related deformation structures in the footwall damage zone.

Physical and chemical strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective cementation / Pizzati, Mattia; Balsamo, Fabrizio; Storti, Fabrizio; Iacumin, Paola. - In: GEOLOGICAL SOCIETY OF AMERICA BULLETIN. - ISSN 0016-7606. - 132:5-6(2020), pp. 1183-1200. [10.1130/B35296.1]

Physical and chemical strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective cementation

Pizzati, Mattia
Writing – Original Draft Preparation
;
Balsamo, Fabrizio
Membro del Collaboration Group
;
Storti, Fabrizio
Membro del Collaboration Group
;
Iacumin, Paola
Membro del Collaboration Group
2020-01-01

Abstract

In this work, we report the results of a multidisciplinary study describing the structural architecture and diagenetic evolution of the Rocca di Neto extensional fault zone developed in poorly lithified sandstones of the Crotone Basin, Southern Italy. The studied fault zone has an estimated displacement of ∼90 m and consists of: (1) a low-deformation zone with subsidiary faults and widely spaced deformation bands; (2) an ∼10-mwide damage zone, characterized by a dense network of conjugate deformation bands; (3) an ∼3-m-wide mixed zone produced by tectonic mixing of sediments with different grain size; (4) an ∼1-m-wide fault core with bedding transposed into foliation and ultracomminute black gouge layers. Microstructural investigations indicate that particulate flow was the dominant early-stage deformation mechanism, while cataclasis became predominant after porosity loss, shallow burial, and selective calcite cementation. The combination of tectonic compaction and preferential cementation led to a strain-hardening behavior inducing the formation of “inclined conjugate deformation band sets” inside the damage zone, caused by the kinematic stress field associated with fault activity. Conversely, conjugate deformation band sets with a vertical bisector formed outside the damage zone in response to the regional extensional stress field. Stable isotope analysis helped in constraining the diagenetic environment of deformation, which is characterized by mixed marine-meteoric signature for cements hosted inside the damage zone, while it progressively becomes more meteoric moving outside the fault zone. This evidence supports the outward propagation of fault-related deformation structures in the footwall damage zone.
2020
Physical and chemical strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective cementation / Pizzati, Mattia; Balsamo, Fabrizio; Storti, Fabrizio; Iacumin, Paola. - In: GEOLOGICAL SOCIETY OF AMERICA BULLETIN. - ISSN 0016-7606. - 132:5-6(2020), pp. 1183-1200. [10.1130/B35296.1]
File in questo prodotto:
File Dimensione Formato  
MPizzati_B35296_v3.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 8.72 MB
Formato Adobe PDF
8.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2865711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact