Current environmental concerns and fuel scarcity are leading to the progressive introduction of Electric Vehicles (EV) in the global fleet vehicle population. This requires significant design and research efforts from scientific community and industry to provide reliable automotive electric propulsion systems. The power modules used for automotive traction inverters can be considered as central elements of such systems. As they are subject to high electro-thermal stress during operation, Design-for-Reliability (DfR) approaches should be adopted. Thus, accurate models for electro-thermal simulations are relevant since the early design stages. However, such simulations become highly time consuming and complex when accurate thermal characterization through standardized or real driving conditions needs to be provided. In this context, this work proposes a simulation methodology that combines real-time simulation for electro-thermal characterization of the whole EV propulsion system, using a 1D equivalent thermal impedance circuit, in conjunction with 3D FEM thermal simulation. In this way, an accurate thermal characterization of the power module under driving cycles with long duration (of hundreds of seconds) can be obtained without computing heavy 3D FEM simulations. The proposed procedure allows to simplify and speed up the early design stages while maintaining high accuracy in the results.

A methodology to determine reliability issues in automotive SiC power modules combining 1D and 3D thermal simulations under driving cycle profiles / Matallana, A.; Robles, E.; Ibarra, E.; Andreu, J.; Delmonte, N.; Cova, P.. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 102:(2019), p. 113500. [10.1016/j.microrel.2019.113500]

A methodology to determine reliability issues in automotive SiC power modules combining 1D and 3D thermal simulations under driving cycle profiles

Delmonte N.;Cova P.
2019-01-01

Abstract

Current environmental concerns and fuel scarcity are leading to the progressive introduction of Electric Vehicles (EV) in the global fleet vehicle population. This requires significant design and research efforts from scientific community and industry to provide reliable automotive electric propulsion systems. The power modules used for automotive traction inverters can be considered as central elements of such systems. As they are subject to high electro-thermal stress during operation, Design-for-Reliability (DfR) approaches should be adopted. Thus, accurate models for electro-thermal simulations are relevant since the early design stages. However, such simulations become highly time consuming and complex when accurate thermal characterization through standardized or real driving conditions needs to be provided. In this context, this work proposes a simulation methodology that combines real-time simulation for electro-thermal characterization of the whole EV propulsion system, using a 1D equivalent thermal impedance circuit, in conjunction with 3D FEM thermal simulation. In this way, an accurate thermal characterization of the power module under driving cycles with long duration (of hundreds of seconds) can be obtained without computing heavy 3D FEM simulations. The proposed procedure allows to simplify and speed up the early design stages while maintaining high accuracy in the results.
A methodology to determine reliability issues in automotive SiC power modules combining 1D and 3D thermal simulations under driving cycle profiles / Matallana, A.; Robles, E.; Ibarra, E.; Andreu, J.; Delmonte, N.; Cova, P.. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 102:(2019), p. 113500. [10.1016/j.microrel.2019.113500]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0026271419303774-main.pdf

solo utenti autorizzati

Descrizione: Paper
Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2863642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact