We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness.

On the Curvature of Conic Kaehler–Einstein Metrics / Arezzo, Claudio; Della Vedova, Alberto; La Nave, Gabriele. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 28:1(2018), pp. 265-283. [10.1007/s12220-017-9819-y]

On the Curvature of Conic Kaehler–Einstein Metrics

Claudio Arezzo;
2018-01-01

Abstract

We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness.
2018
On the Curvature of Conic Kaehler–Einstein Metrics / Arezzo, Claudio; Della Vedova, Alberto; La Nave, Gabriele. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 28:1(2018), pp. 265-283. [10.1007/s12220-017-9819-y]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2862958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact