We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness.
On the Curvature of Conic Kaehler–Einstein Metrics / Arezzo, Claudio; Della Vedova, Alberto; La Nave, Gabriele. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 28:1(2018), pp. 265-283. [10.1007/s12220-017-9819-y]
On the Curvature of Conic Kaehler–Einstein Metrics
Claudio Arezzo;
2018-01-01
Abstract
We prove a regularity result for Monge–Ampère equations degenerate along smooth divisor on Kähler manifolds in Donaldson’s spaces of -weighted functions. We apply this result to study the curvature of Kähler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.