Molecular characterization of non-small cell lung cancer (NSCLC) marked an historical turning point for the treatment of lung tumors harboring kinase alterations suitable for specific targeted drugs inhibition, translating into major clinical improvements. Besides EGFR, ALK and ROS1, BRAF represents a novel therapeutic target for the treatment of advanced NSCLC. BRAF mutations, found in 1.5–3.5% of NSCLC, are responsible of the constitutive activation of mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Clinical trials evaluating the efficacy of the BRAF inhibitor dabrafenib in combination with the downstream MEK inhibitor trametinib in metastatic BRAF V600E -mutated NSCLC guaranteed FDA and EMA rapid approval of the combination regimen in this clinical setting. In line with the striking results observed in metastatic melanoma harboring the same molecular alteration, BRAF and MEK inhibition should be considered a new standard of care in this molecular subtype of NSCLC. In the present review, we propose an overview of the available evidence about BRAF in NSCLC mutations (V600E and non-V600E), from biological significance to emerging clinical implications of BRAF mutations detection. Focusing on the current strategies to act against the mutated kinase, we moreover approach additional strategies to overcome treatment resistance.
BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall / Leonetti, A.; Facchinetti, F.; Rossi, G.; Minari, R.; Conti, A.; Friboulet, L.; Tiseo, M.; Planchard, D.. - In: CANCER TREATMENT REVIEWS. - ISSN 0305-7372. - 66:(2018), pp. 82-94. [10.1016/j.ctrv.2018.04.006]
BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall
Tiseo M.;
2018-01-01
Abstract
Molecular characterization of non-small cell lung cancer (NSCLC) marked an historical turning point for the treatment of lung tumors harboring kinase alterations suitable for specific targeted drugs inhibition, translating into major clinical improvements. Besides EGFR, ALK and ROS1, BRAF represents a novel therapeutic target for the treatment of advanced NSCLC. BRAF mutations, found in 1.5–3.5% of NSCLC, are responsible of the constitutive activation of mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Clinical trials evaluating the efficacy of the BRAF inhibitor dabrafenib in combination with the downstream MEK inhibitor trametinib in metastatic BRAF V600E -mutated NSCLC guaranteed FDA and EMA rapid approval of the combination regimen in this clinical setting. In line with the striking results observed in metastatic melanoma harboring the same molecular alteration, BRAF and MEK inhibition should be considered a new standard of care in this molecular subtype of NSCLC. In the present review, we propose an overview of the available evidence about BRAF in NSCLC mutations (V600E and non-V600E), from biological significance to emerging clinical implications of BRAF mutations detection. Focusing on the current strategies to act against the mutated kinase, we moreover approach additional strategies to overcome treatment resistance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.