Oxidative stress (OS) is a common pathogenic factor involved in the onset of several diseases in humans, from immunologic disorders to malignancy, being a serious public health problem. In perinatal period, OS has been associated with adverse outcome of pregnancy and neonatal diseases. Dangerous effects of OS are mediated by increased production of free radicals (FRs) following various mechanisms, such as hypoxia, ischemia reperfusion, hyperoxia, inflammation, mitochondrial dysfunction, Fenton chemistry, and prostaglandin metabolism. FRs have short half-life, and their measurement in vivo is faced with many challenges. However, oxyradical derivatives are stable and thus may be measured and monitored repeatedly. The quantification of OS is based on the measurement of specific biomarkers in biologic fluids and tissues, which reflect induced oxidative damage to lipids, proteins, and DNA. Prostanoids, non-protein-bound iron (NPBI), and advanced oxidation protein products (AOPP) are actually considered truly specific and reliable for neonatal injury. Defining reference values for these biomarkers is necessary to investigate their role in neonatal diseases or also to evaluate the success of treatments. In this work, we wanted to define laboratory reference values for biomarkers of OS in a healthy population of term newborns.
Oxidative Stress Biomarkers: Establishment of Reference Values for Isoprostanes, AOPP, and NPBI in Cord Blood / Longini, Mariangela; Belvisi, Elisa; Proietti, Fabrizio; Bazzini, Francesco; Buonocore, Giuseppe; Perrone, Serafina. - In: MEDIATORS OF INFLAMMATION. - ISSN 0962-9351. - 2017:(2017), pp. 1-6. [10.1155/2017/1758432]
Oxidative Stress Biomarkers: Establishment of Reference Values for Isoprostanes, AOPP, and NPBI in Cord Blood
PERRONE, SERAFINA
2017-01-01
Abstract
Oxidative stress (OS) is a common pathogenic factor involved in the onset of several diseases in humans, from immunologic disorders to malignancy, being a serious public health problem. In perinatal period, OS has been associated with adverse outcome of pregnancy and neonatal diseases. Dangerous effects of OS are mediated by increased production of free radicals (FRs) following various mechanisms, such as hypoxia, ischemia reperfusion, hyperoxia, inflammation, mitochondrial dysfunction, Fenton chemistry, and prostaglandin metabolism. FRs have short half-life, and their measurement in vivo is faced with many challenges. However, oxyradical derivatives are stable and thus may be measured and monitored repeatedly. The quantification of OS is based on the measurement of specific biomarkers in biologic fluids and tissues, which reflect induced oxidative damage to lipids, proteins, and DNA. Prostanoids, non-protein-bound iron (NPBI), and advanced oxidation protein products (AOPP) are actually considered truly specific and reliable for neonatal injury. Defining reference values for these biomarkers is necessary to investigate their role in neonatal diseases or also to evaluate the success of treatments. In this work, we wanted to define laboratory reference values for biomarkers of OS in a healthy population of term newborns.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.