Aquatic macrophytes modify the sediment biogeochemistry via radial oxygen loss (ROL) from their roots. However, the variation in ROL and its implication for nutrient availability remains poorly explored. Here, we use planar O 2 optodes to investigate the spatial heterogeneity of oxic niches within the rhizosphere of Vallisneria spiralis and their alteration following variable light and ambient O 2 levels. The effect of ROL on NH 4+ and PO 43− distribution in the rhizosphere was evaluated by a combination of 15 N isotopic techniques, 2D sampling, and electron microscopy. A single specimen of V. spiralis could maintain an oxidised sediment volume of 41–47 cm 3 and 10–27 cm 3 in the rhizosphere at 100% and 38% dissolved oxygen saturation in the overlying water, respectively. Whatever the environmental conditions, the ROL was, however, very heterogeneous and dependent on root age and architecture of the root system. ROL stimulated the coupling between denitrification and nitrification in the sediment both under dark (+25 μmol N-N 2  m −2  hr −1 ) and light (+70 μmol N-N 2  m −2  hr −1 ) conditions. This, in combination with plant uptake, contributed to intense removal of NH 4+ from the pore water. Similarly, PO 43− was highly depleted in the rhizosphere. The detection of Fe-P plaques on the roots surface indicated substantial entrapment of P as a consequence of ROL. The extensive spatio-temporal heterogeneity of oxic and anoxic conditions ensured that aerobic and anaerobic processes co-occurred in the rhizosphere and this presumably reduced potential nutrient limitation while maximising plant fitness in an otherwise hostile reduced environment.

Spatial heterogeneity and short-term oxygen dynamics in the rhizosphere of Vallisneria spiralis: Implications for nutrient cycling / Marzocchi, Ugo; Benelli, Sara; Larsen, Morten; Bartoli, Marco; Glud, Ronnie N.. - In: FRESHWATER BIOLOGY. - ISSN 0046-5070. - 64:3(2019), pp. 532-543. [10.1111/fwb.13240]

Spatial heterogeneity and short-term oxygen dynamics in the rhizosphere of Vallisneria spiralis: Implications for nutrient cycling

Benelli, Sara;Bartoli, Marco;
2019-01-01

Abstract

Aquatic macrophytes modify the sediment biogeochemistry via radial oxygen loss (ROL) from their roots. However, the variation in ROL and its implication for nutrient availability remains poorly explored. Here, we use planar O 2 optodes to investigate the spatial heterogeneity of oxic niches within the rhizosphere of Vallisneria spiralis and their alteration following variable light and ambient O 2 levels. The effect of ROL on NH 4+ and PO 43− distribution in the rhizosphere was evaluated by a combination of 15 N isotopic techniques, 2D sampling, and electron microscopy. A single specimen of V. spiralis could maintain an oxidised sediment volume of 41–47 cm 3 and 10–27 cm 3 in the rhizosphere at 100% and 38% dissolved oxygen saturation in the overlying water, respectively. Whatever the environmental conditions, the ROL was, however, very heterogeneous and dependent on root age and architecture of the root system. ROL stimulated the coupling between denitrification and nitrification in the sediment both under dark (+25 μmol N-N 2  m −2  hr −1 ) and light (+70 μmol N-N 2  m −2  hr −1 ) conditions. This, in combination with plant uptake, contributed to intense removal of NH 4+ from the pore water. Similarly, PO 43− was highly depleted in the rhizosphere. The detection of Fe-P plaques on the roots surface indicated substantial entrapment of P as a consequence of ROL. The extensive spatio-temporal heterogeneity of oxic and anoxic conditions ensured that aerobic and anaerobic processes co-occurred in the rhizosphere and this presumably reduced potential nutrient limitation while maximising plant fitness in an otherwise hostile reduced environment.
2019
Spatial heterogeneity and short-term oxygen dynamics in the rhizosphere of Vallisneria spiralis: Implications for nutrient cycling / Marzocchi, Ugo; Benelli, Sara; Larsen, Morten; Bartoli, Marco; Glud, Ronnie N.. - In: FRESHWATER BIOLOGY. - ISSN 0046-5070. - 64:3(2019), pp. 532-543. [10.1111/fwb.13240]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2857951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact