In this note we study the behavior of symplectic cohomology groups under symplectic deformations. Moreover, we show that for compact almost-Kähler manifolds (X, J, g, ω) with JC∞-pure and full the space of de Rham harmonic forms is contained in the space of symplectic-Bott-Chern harmonic forms. Furthermore, we prove that the second non-HLC degree measures the gap between the de Rham and the symplectic-Bott-Chern harmonic forms.

Symplectic cohomologies and deformations / Tardini, N.; Tomassini, A.. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 12:1-2(2019), pp. 221-237. [10.1007/s40574-018-0175-z]

Symplectic cohomologies and deformations

Tardini N.;Tomassini A.
2019-01-01

Abstract

In this note we study the behavior of symplectic cohomology groups under symplectic deformations. Moreover, we show that for compact almost-Kähler manifolds (X, J, g, ω) with JC∞-pure and full the space of de Rham harmonic forms is contained in the space of symplectic-Bott-Chern harmonic forms. Furthermore, we prove that the second non-HLC degree measures the gap between the de Rham and the symplectic-Bott-Chern harmonic forms.
2019
Symplectic cohomologies and deformations / Tardini, N.; Tomassini, A.. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 12:1-2(2019), pp. 221-237. [10.1007/s40574-018-0175-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2851666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact