Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2fluxes, mostly sustained by respiration of water column NO3−in sediments with chironomid larvae and by NO3−produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.

Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals / Carpintero Moraes, Paula; Zilius, Mindaugas; Benelli, Sara; Bartoli, Marco. - In: HYDROBIOLOGIA. - ISSN 0018-8158. - 819:1(2018), pp. 217-230. [10.1007/s10750-018-3639-3]

Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals

Benelli, Sara;Bartoli, Marco
2018-01-01

Abstract

Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2fluxes, mostly sustained by respiration of water column NO3−in sediments with chironomid larvae and by NO3−produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.
2018
Nitrification and denitrification in estuarine sediments with tube-dwelling benthic animals / Carpintero Moraes, Paula; Zilius, Mindaugas; Benelli, Sara; Bartoli, Marco. - In: HYDROBIOLOGIA. - ISSN 0018-8158. - 819:1(2018), pp. 217-230. [10.1007/s10750-018-3639-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2849969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact