The Relevance Index (RI) is an information theory-based measure that was originally defined to detect groups of functionally similar neurons, based on their dynamic behavior. More in general, considering the dynamical analysis of a generic complex system, the larger the RI value associated with a subset of variables, the more those variables are strongly correlated with one another and independent from the other variables describing the system status. We describe some early experiments to evaluate whether such an index can be used to extract relevant feature subsets in binary pattern classification problems. In particular, we used a PSO variant to efficiently explore the RI search space, whose size equals the number of possible variable subsets (in this case 2104) and find the most relevant and discriminating feature subsets with respect to pattern representation. We then turned such relevant subsets into a new smaller set of richer features, whose values depend on the values of the binary features they include. The paper reports some exploratory results we obtained in a simple character recognition task, comparing the performance of RI-based feature extraction and selection with other classical feature selection/extraction approaches.

Can the Relevance Index be Used to Evolve Relevant Feature Sets? / Sani, Laura; Pecori, Riccardo; Vicari, Emilio; Amoretti, Michele; Mordonini, Monica; Cagnoni, Stefano. - ELETTRONICO. - 10784:(2018), pp. 472-479. (Intervento presentato al convegno 21st International Conference on Applications of Evolutionary Computation, EvoApplications 2018 tenutosi a ita nel 2018) [10.1007/978-3-319-77538-8_32].

Can the Relevance Index be Used to Evolve Relevant Feature Sets?

Sani, Laura;Pecori, Riccardo;Vicari, Emilio;Amoretti, Michele;Mordonini, Monica;Cagnoni, Stefano
2018-01-01

Abstract

The Relevance Index (RI) is an information theory-based measure that was originally defined to detect groups of functionally similar neurons, based on their dynamic behavior. More in general, considering the dynamical analysis of a generic complex system, the larger the RI value associated with a subset of variables, the more those variables are strongly correlated with one another and independent from the other variables describing the system status. We describe some early experiments to evaluate whether such an index can be used to extract relevant feature subsets in binary pattern classification problems. In particular, we used a PSO variant to efficiently explore the RI search space, whose size equals the number of possible variable subsets (in this case 2104) and find the most relevant and discriminating feature subsets with respect to pattern representation. We then turned such relevant subsets into a new smaller set of richer features, whose values depend on the values of the binary features they include. The paper reports some exploratory results we obtained in a simple character recognition task, comparing the performance of RI-based feature extraction and selection with other classical feature selection/extraction approaches.
2018
9783319775371
Can the Relevance Index be Used to Evolve Relevant Feature Sets? / Sani, Laura; Pecori, Riccardo; Vicari, Emilio; Amoretti, Michele; Mordonini, Monica; Cagnoni, Stefano. - ELETTRONICO. - 10784:(2018), pp. 472-479. (Intervento presentato al convegno 21st International Conference on Applications of Evolutionary Computation, EvoApplications 2018 tenutosi a ita nel 2018) [10.1007/978-3-319-77538-8_32].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2845973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact