The demand for provisioning, using, and maintaining distributed computational resources is growing hand in hand with the quest for ubiquitous services. Centralized infrastructures such as cloud computing systems provide suitable solutions for many applications, but their scalability could be limited in some scenarios, such as in the case of latency-dependent applications. The volunteer cloud paradigm aims at overcoming this limitation by encouraging clients to offer their own spare, perhaps unused, computational resources. Volunteer clouds are thus complex, large-scale, dynamic systems that demand for self-adaptive capabilities to offer effective services, as well as modeling and analysis techniques to predict their behavior. In this article, we propose a novel holistic approach for volunteer clouds supporting collaborative task execution services able to improve the quality of service of compute-intensive workloads. We instantiate our approach by extending a recently proposed ant colony optimization algorithm for distributed task execution with a workload-based partitioning of the overlay network of the volunteer cloud. Finally, we evaluate our approach using simulation-based statistical analysis techniques on a workload benchmark provided by Google. Our results show that the proposed approach outperforms some traditional distributed task scheduling algorithms in the presence of compute-intensive workloads.

A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds / Sebastio, Stefano; Amoretti, Michele; Lluch Lafuente, Alberto; Scala, Antonio. - In: ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION. - ISSN 1049-3301. - 28:2(2018). [10.1145/3155336]

A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds

Stefano Sebastio
;
Michele Amoretti;
2018-01-01

Abstract

The demand for provisioning, using, and maintaining distributed computational resources is growing hand in hand with the quest for ubiquitous services. Centralized infrastructures such as cloud computing systems provide suitable solutions for many applications, but their scalability could be limited in some scenarios, such as in the case of latency-dependent applications. The volunteer cloud paradigm aims at overcoming this limitation by encouraging clients to offer their own spare, perhaps unused, computational resources. Volunteer clouds are thus complex, large-scale, dynamic systems that demand for self-adaptive capabilities to offer effective services, as well as modeling and analysis techniques to predict their behavior. In this article, we propose a novel holistic approach for volunteer clouds supporting collaborative task execution services able to improve the quality of service of compute-intensive workloads. We instantiate our approach by extending a recently proposed ant colony optimization algorithm for distributed task execution with a workload-based partitioning of the overlay network of the volunteer cloud. Finally, we evaluate our approach using simulation-based statistical analysis techniques on a workload benchmark provided by Google. Our results show that the proposed approach outperforms some traditional distributed task scheduling algorithms in the presence of compute-intensive workloads.
2018
A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds / Sebastio, Stefano; Amoretti, Michele; Lluch Lafuente, Alberto; Scala, Antonio. - In: ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION. - ISSN 1049-3301. - 28:2(2018). [10.1145/3155336]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2841513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
social impact