We consider a class of non-uniformly nonlinear elliptic equations whose model is given by where p<q and a(x)≥0, and establish the related nonlinear Caldeon-Zygmund theory. In particular, we provide sharp conditions under which the natural, and optimal, Calderon-Zygmund type result. holds for every γ ≥ 1 These problems naturally emerge as Euler-Lagrange equations of some variational integrals introduced and studied by Marcellini [41] and Zhikov [53] in the framework of Homogenisation and Lavrentiev phenomenon.

Calderón-Zygmund estimates and non-uniformly elliptic operators / Colombo, Maria; Mingione, Giuseppe. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 270:4(2016), pp. 1416-1478. [10.1016/j.jfa.2015.06.022]

Calderón-Zygmund estimates and non-uniformly elliptic operators

Mingione, Giuseppe
2016-01-01

Abstract

We consider a class of non-uniformly nonlinear elliptic equations whose model is given by where p
Calderón-Zygmund estimates and non-uniformly elliptic operators / Colombo, Maria; Mingione, Giuseppe. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 270:4(2016), pp. 1416-1478. [10.1016/j.jfa.2015.06.022]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2840756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 146
social impact