Many cutting processes, such as chopping, slicing, carving, consist in two different stages: an initial stage of indentation, in which the cutting tool is pushed into the material under the action of an external force; and a second stage, where the target material undergoes a progressive separation. This second stage is characterised by the formation of a fracture surface followed by the cut propagation due to the increasing external force, until eventually a steady state might occur. The purpose of this paper is to analyse the cutting process by means of some concepts of fracture mechanics, and discuss the occurrence of the steady state. A simple model is used to obtain an analytic expression of the stress intensity factor at the tip of the cut, and investigate the evolution of the fracture process. It is found that the cut propagation depends on the wedge sharpness. The analytic results are compared with finite element analyses, where the effect of tip blunting due to plasticity is taken into account. The influence of the cutting tool geometry is also discussed.

A fracture mechanics model to study indentation cutting / Terzano, M.; Spagnoli, A.; Stahle, P.. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 1460-2695. - 41:(2018), pp. 821-830. [10.1111/ffe.12750]

A fracture mechanics model to study indentation cutting

M. Terzano;A. Spagnoli;
2018-01-01

Abstract

Many cutting processes, such as chopping, slicing, carving, consist in two different stages: an initial stage of indentation, in which the cutting tool is pushed into the material under the action of an external force; and a second stage, where the target material undergoes a progressive separation. This second stage is characterised by the formation of a fracture surface followed by the cut propagation due to the increasing external force, until eventually a steady state might occur. The purpose of this paper is to analyse the cutting process by means of some concepts of fracture mechanics, and discuss the occurrence of the steady state. A simple model is used to obtain an analytic expression of the stress intensity factor at the tip of the cut, and investigate the evolution of the fracture process. It is found that the cut propagation depends on the wedge sharpness. The analytic results are compared with finite element analyses, where the effect of tip blunting due to plasticity is taken into account. The influence of the cutting tool geometry is also discussed.
2018
A fracture mechanics model to study indentation cutting / Terzano, M.; Spagnoli, A.; Stahle, P.. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 1460-2695. - 41:(2018), pp. 821-830. [10.1111/ffe.12750]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2838236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact