As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers (SCFs) are designed with shifted zero-dispersion wavelengths (ZDWs) at around 1.5 μ, 2 μ, and 2.8 μ, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum (SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge (LWE), the power proportion in the long-wavelength region (PPL), and spectral flatness (SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of ∼ 13 μ and PPL up to ∼ 72%. For As2Se3 SCFs, the LWE of 15.5 μ and the highest PPL of ∼ 87% can be achieved in a 10 mm-long fiber with ZDWof 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.

Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers / Mo, Kundong; Zhai, Bo; Jianfeng, Li; Coscelli, Enrico; Poli, Federica; Cucinotta, Annamaria; Selleri, Stefano; Wei, Chen; Liu, Yong. - In: CHINESE PHYSICS B. - ISSN 1674-1056. - 26:5(2017), p. 054216. [10.1088/1674-1056/26/5/054216]

Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers

COSCELLI, Enrico;POLI, Federica;CUCINOTTA, Annamaria;SELLERI, Stefano;
2017-01-01

Abstract

As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers (SCFs) are designed with shifted zero-dispersion wavelengths (ZDWs) at around 1.5 μ, 2 μ, and 2.8 μ, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum (SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge (LWE), the power proportion in the long-wavelength region (PPL), and spectral flatness (SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of ∼ 13 μ and PPL up to ∼ 72%. For As2Se3 SCFs, the LWE of 15.5 μ and the highest PPL of ∼ 87% can be achieved in a 10 mm-long fiber with ZDWof 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.
2017
Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers / Mo, Kundong; Zhai, Bo; Jianfeng, Li; Coscelli, Enrico; Poli, Federica; Cucinotta, Annamaria; Selleri, Stefano; Wei, Chen; Liu, Yong. - In: CHINESE PHYSICS B. - ISSN 1674-1056. - 26:5(2017), p. 054216. [10.1088/1674-1056/26/5/054216]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2828929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact