Ring chromosome 20 [r(20)] syndrome is an underdiagnosed chromosomal anomaly characterized by severe epilepsy, behavioral problems, and mild-to-moderate cognitive deficits. Since the cognitive and behavioral decline follows seizure onset, this syndrome has been proposed as an epileptic encephalopathy (EE). The recent overwhelming development of advanced neuroimaging techniques has opened a new era in the investigation of the brain networks subserving the EEs. In particular, functional neuroimaging tools are well suited to show alterations related to epileptiform discharges at the network level and to build hypotheses about the mechanisms underlying the cognitive disruption observed in these conditions. This paper reviews the brain circuits and their disruption as revealed by functional neuroimaging studies in patients with [r(20)] syndrome. It discusses the clinical consequences of the neuroimaging findings on the management of patients with [r(20)] syndrome, including their impact to an earlier diagnosis of this disorder. Based on the available lines of evidences, [r(20)] syndrome is characterized by interictal and ictal dysfunctions within basal ganglia-prefrontal lobe networks and by long-lasting effects of the peculiar theta-delta rhythm, which represents an EEG marker of the syndrome on integrated brain networks that subserve cognitive functions.

Emerging neuroimaging contribution to the diagnosis and management of the ring chromosome 20 syndrome / Vaudano, Anna Elisabetta; Ruggieri, Andrea; Vignoli, Aglaia; Canevini, Maria Paola; Meletti, Stefano. - In: EPILEPSY & BEHAVIOR. - ISSN 1525-5050. - 45(2015), pp. 155-163. [10.1016/j.yebeh.2015.02.002]

Emerging neuroimaging contribution to the diagnosis and management of the ring chromosome 20 syndrome

VAUDANO, Anna Elisabetta;
2015

Abstract

Ring chromosome 20 [r(20)] syndrome is an underdiagnosed chromosomal anomaly characterized by severe epilepsy, behavioral problems, and mild-to-moderate cognitive deficits. Since the cognitive and behavioral decline follows seizure onset, this syndrome has been proposed as an epileptic encephalopathy (EE). The recent overwhelming development of advanced neuroimaging techniques has opened a new era in the investigation of the brain networks subserving the EEs. In particular, functional neuroimaging tools are well suited to show alterations related to epileptiform discharges at the network level and to build hypotheses about the mechanisms underlying the cognitive disruption observed in these conditions. This paper reviews the brain circuits and their disruption as revealed by functional neuroimaging studies in patients with [r(20)] syndrome. It discusses the clinical consequences of the neuroimaging findings on the management of patients with [r(20)] syndrome, including their impact to an earlier diagnosis of this disorder. Based on the available lines of evidences, [r(20)] syndrome is characterized by interictal and ictal dysfunctions within basal ganglia-prefrontal lobe networks and by long-lasting effects of the peculiar theta-delta rhythm, which represents an EEG marker of the syndrome on integrated brain networks that subserve cognitive functions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2826678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 8
social impact