In recent years, environmentally conscious design has become a fundamental approach for industries which have to consider the variable environment during the design process. Waste management is one of the most important aspects to be handled, to reduce the disposal in landfills and to encourage the sustainable 3R approach: Reuse, Recycling and Remanufacturing. Product disassembly is an essential phase of the product lifecycle, necessary to evaluate the End-of-Life (EoL) strategies and to reduce environmental impact. In order to minimize the impact on production and costs it is very important to consider EoL scenarios during the embodiment design phase, when designer's decisions influence product structure. Design for Disassembly (DFD) is a powerful method to reduce disassembly time and costs. However, there are no useful tools which provide guidelines to improve the product disassemblability or promote specific EoL scenarios. For these reasons this paper describes an innovative Design for Disassembly approach and related tool to support designers in product disassemblability evaluation. The tool has the scope to manage EoL scenarios for industrial waste in the early design phases and to share metadata with the traditional design tools. Disassembly costs is one of the most important parameters during the evaluation of EoL scenarios. Six indices are presented to evaluate the economic and environmental feasibility of the EoL strategies. The calculation of the six indices permits alternative EoL scenarios to be compared and encourage the recyclability, reusability or re-manufacturability of a product. These evaluations can be used to foster a particular EoL scenario, as early on as in the design process. The preliminary analysis on mechatronic products underline the utility of the software tool and indices. Product re-design, realized using this approach, shows a relevant decrease in environmental impacts and disassembly costs. As a consequence, the new product has a relevant percentage of components with a closed-loop lifecycle. © 2012 by ASME.
Promoting and managing end-of-life closed-loop scenarios of products using a design for disassembly evaluation tool / Favi, Claudio; Germani, Michele; Mandolini, Marco; Marconi, Marco. - ELETTRONICO. - 3:PARTS A AND B(2012), pp. 1339-1348. (Intervento presentato al convegno ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012 tenutosi a Chicago, IL, usa nel 2012) [10.1115/DETC2012-70997].
Promoting and managing end-of-life closed-loop scenarios of products using a design for disassembly evaluation tool
FAVI, Claudio;
2012-01-01
Abstract
In recent years, environmentally conscious design has become a fundamental approach for industries which have to consider the variable environment during the design process. Waste management is one of the most important aspects to be handled, to reduce the disposal in landfills and to encourage the sustainable 3R approach: Reuse, Recycling and Remanufacturing. Product disassembly is an essential phase of the product lifecycle, necessary to evaluate the End-of-Life (EoL) strategies and to reduce environmental impact. In order to minimize the impact on production and costs it is very important to consider EoL scenarios during the embodiment design phase, when designer's decisions influence product structure. Design for Disassembly (DFD) is a powerful method to reduce disassembly time and costs. However, there are no useful tools which provide guidelines to improve the product disassemblability or promote specific EoL scenarios. For these reasons this paper describes an innovative Design for Disassembly approach and related tool to support designers in product disassemblability evaluation. The tool has the scope to manage EoL scenarios for industrial waste in the early design phases and to share metadata with the traditional design tools. Disassembly costs is one of the most important parameters during the evaluation of EoL scenarios. Six indices are presented to evaluate the economic and environmental feasibility of the EoL strategies. The calculation of the six indices permits alternative EoL scenarios to be compared and encourage the recyclability, reusability or re-manufacturability of a product. These evaluations can be used to foster a particular EoL scenario, as early on as in the design process. The preliminary analysis on mechatronic products underline the utility of the software tool and indices. Product re-design, realized using this approach, shows a relevant decrease in environmental impacts and disassembly costs. As a consequence, the new product has a relevant percentage of components with a closed-loop lifecycle. © 2012 by ASME.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.