Via Carleman estimates we prove uniqueness and continuous dependence results for lateral Cauchy problems for linear integro-differential parabolic equations without initial conditions. The addition al information supplied prescribes the conormal derivative of the temperature on a relatively open subset of the lateral boundary of the space-time domain.

Continuous dependence and uniqueness for lateral Cauchy problems for linear integro-differential parabolic equations / Lorenzi, Alfredo; Lorenzi, Luca Francesco Giuseppe; Yamamoto, Masahiro. - In: JOURNAL OF INVERSE AND ILL-POSED PROBLEMS. - ISSN 1569-3945. - 25:5(2017), pp. 617-631. [10.1515/jiip-2016-0066]

Continuous dependence and uniqueness for lateral Cauchy problems for linear integro-differential parabolic equations

LORENZI, Luca Francesco Giuseppe;
2017-01-01

Abstract

Via Carleman estimates we prove uniqueness and continuous dependence results for lateral Cauchy problems for linear integro-differential parabolic equations without initial conditions. The addition al information supplied prescribes the conormal derivative of the temperature on a relatively open subset of the lateral boundary of the space-time domain.
2017
Continuous dependence and uniqueness for lateral Cauchy problems for linear integro-differential parabolic equations / Lorenzi, Alfredo; Lorenzi, Luca Francesco Giuseppe; Yamamoto, Masahiro. - In: JOURNAL OF INVERSE AND ILL-POSED PROBLEMS. - ISSN 1569-3945. - 25:5(2017), pp. 617-631. [10.1515/jiip-2016-0066]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2825377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact