Sharp leading edges with a millimeter-scale radius are required for hypersonic vehicles from aerodynamic reasons. However, with the leading edges being so sharp, stagnation regions at wing and tail leading edges suffer a hostile thermal environment. Therefore, a high-temperature heat pipe is considered to be integrated into the structure of the leading edge to reduce the temperature of the stagnation point. In this paper, a superalloy-refractory composite-container-“wall” combined with the wick and working fluid structure is proposed, which is proved to be a feasible design of a heat pipe for the semi-passive thermal protection system (TPS). The effects of different material of the exterior surface on the temperature distributions are investigated. The effect of the half wedge angle, the design length and porosity of the wick is also investigated to find the effect of the geometry of the structure of the leading edge on the operation of the heat pipe.

Investigation on thermal performance of a high-temperature heat-pipe thermal protection structure / Xie, G.; Ji, T.; Sunden, B.; Qin, J.; Lorenzini, Giulio. - In: JOURNAL OF ENGINEERING THERMOPHYSICS. - ISSN 1810-2328. - 25:3(2016), pp. 359-376. [10.1134/S1810232816030061]

Investigation on thermal performance of a high-temperature heat-pipe thermal protection structure

LORENZINI, Giulio
2016-01-01

Abstract

Sharp leading edges with a millimeter-scale radius are required for hypersonic vehicles from aerodynamic reasons. However, with the leading edges being so sharp, stagnation regions at wing and tail leading edges suffer a hostile thermal environment. Therefore, a high-temperature heat pipe is considered to be integrated into the structure of the leading edge to reduce the temperature of the stagnation point. In this paper, a superalloy-refractory composite-container-“wall” combined with the wick and working fluid structure is proposed, which is proved to be a feasible design of a heat pipe for the semi-passive thermal protection system (TPS). The effects of different material of the exterior surface on the temperature distributions are investigated. The effect of the half wedge angle, the design length and porosity of the wick is also investigated to find the effect of the geometry of the structure of the leading edge on the operation of the heat pipe.
2016
Investigation on thermal performance of a high-temperature heat-pipe thermal protection structure / Xie, G.; Ji, T.; Sunden, B.; Qin, J.; Lorenzini, Giulio. - In: JOURNAL OF ENGINEERING THERMOPHYSICS. - ISSN 1810-2328. - 25:3(2016), pp. 359-376. [10.1134/S1810232816030061]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2822444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact