In larvae of the white axolotl mutant (Ambystoma mexicanum), contrary to normal dark ones, trunk pigmentation is restricted because the epidermis is unable to support subepidermal migration of pigment cells from the neural crest (NC). This study examines whether the subepidermal extracellular matrix (ECM) is the defective component which prevents pigment cell migration in the white embryo. We transplanted subepidermal ECM, adsorbed in vivo on membrane microcarriers, from and to white and dark embryos in various combinations. White embryos have demonstrated normal NC cell migration along the medioventral pathway, and in order to test the effects of medial ECM on subepidermal migration, this ECM was similarly transplanted. Carriers with ECM attached were inserted subepidermally in host embryos at a premigratory NC stage. Control carriers without ECM and carriers with subepidermal ECM from white donors did not affect NC cell migration in white or dark embryos. In contrast, subepidermal ECM from dark donors triggered NC cell migration in the subepidermal space of both white and dark hosts. Remarkably, subepidermal ECM from white donors which were older than those normally used also stimulated migration in embryos of both strains. Likewise, medial ECM from white donors elicited migration in white as well as dark hosts. Pigment cells occurred among those NC cells that were stimulated to migrate in response to contact with ECM on carriers. These results indicate that the subepidermal ECM of the white embryo is transiently defective as a substrate for pigment cell migration, implying that "maturation" of the ECM is retarded beyond the times during which pigment cells are able to respond. In contrast, the medial ECM of the white embryo appears to mature normally. These findings suggest that the effect of the d gene is expressed regionally through the subepidermal ECM during a limited period of development. Hence, the action of the d gene seems to retard ECM maturation, bringing it out of phase with the migratory capability of the pigment cells. We propose that such a shift in relative timing of the developmental phenomena involved inhibits pigment cell migration in embryos of the white axolotl mutant and, accordingly, that the restricted pigmentation of the mutant larva is generated through heterochrony.

Timing in the regulation of neural crest cell migration: retarded "maturation" of regional extracellular matrix inhibits pigment cell migration in embryos of the white axolotl mutant / Löfberg, J; Perris, Roberto; Epperlein, H. H.. - In: DEVELOPMENTAL BIOLOGY. - ISSN 0012-1606. - 131:1(1989), p. 168-81.

Timing in the regulation of neural crest cell migration: retarded "maturation" of regional extracellular matrix inhibits pigment cell migration in embryos of the white axolotl mutant

PERRIS, Roberto;
1989-01-01

Abstract

In larvae of the white axolotl mutant (Ambystoma mexicanum), contrary to normal dark ones, trunk pigmentation is restricted because the epidermis is unable to support subepidermal migration of pigment cells from the neural crest (NC). This study examines whether the subepidermal extracellular matrix (ECM) is the defective component which prevents pigment cell migration in the white embryo. We transplanted subepidermal ECM, adsorbed in vivo on membrane microcarriers, from and to white and dark embryos in various combinations. White embryos have demonstrated normal NC cell migration along the medioventral pathway, and in order to test the effects of medial ECM on subepidermal migration, this ECM was similarly transplanted. Carriers with ECM attached were inserted subepidermally in host embryos at a premigratory NC stage. Control carriers without ECM and carriers with subepidermal ECM from white donors did not affect NC cell migration in white or dark embryos. In contrast, subepidermal ECM from dark donors triggered NC cell migration in the subepidermal space of both white and dark hosts. Remarkably, subepidermal ECM from white donors which were older than those normally used also stimulated migration in embryos of both strains. Likewise, medial ECM from white donors elicited migration in white as well as dark hosts. Pigment cells occurred among those NC cells that were stimulated to migrate in response to contact with ECM on carriers. These results indicate that the subepidermal ECM of the white embryo is transiently defective as a substrate for pigment cell migration, implying that "maturation" of the ECM is retarded beyond the times during which pigment cells are able to respond. In contrast, the medial ECM of the white embryo appears to mature normally. These findings suggest that the effect of the d gene is expressed regionally through the subepidermal ECM during a limited period of development. Hence, the action of the d gene seems to retard ECM maturation, bringing it out of phase with the migratory capability of the pigment cells. We propose that such a shift in relative timing of the developmental phenomena involved inhibits pigment cell migration in embryos of the white axolotl mutant and, accordingly, that the restricted pigmentation of the mutant larva is generated through heterochrony.
1989
Timing in the regulation of neural crest cell migration: retarded "maturation" of regional extracellular matrix inhibits pigment cell migration in embryos of the white axolotl mutant / Löfberg, J; Perris, Roberto; Epperlein, H. H.. - In: DEVELOPMENTAL BIOLOGY. - ISSN 0012-1606. - 131:1(1989), p. 168-81.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2813158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact