In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.

Numerical and experimental study of local heat transfer enhancement in helically coiled pipes. Preliminary results / Bozzoli, Fabio; Cattani, Luca; Rainieri, Sara; Zachár, A.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 655:1(2015), pp. 1-10. [10.1088/1742-6596/655/1/012047]

Numerical and experimental study of local heat transfer enhancement in helically coiled pipes. Preliminary results

BOZZOLI, Fabio;CATTANI, Luca;RAINIERI, Sara;
2015-01-01

Abstract

In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.
2015
Numerical and experimental study of local heat transfer enhancement in helically coiled pipes. Preliminary results / Bozzoli, Fabio; Cattani, Luca; Rainieri, Sara; Zachár, A.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 655:1(2015), pp. 1-10. [10.1088/1742-6596/655/1/012047]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2812244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact