Thin steel plates-with or without cutouts-are structural components largely used in several engineering applications as buildings, bridges, ships, airplanes and automobiles. However, if an axial compressive load is imposed to these panels an undesired instability phenomenon can occur: buckling. At a certain load magnitude the limit stress is reached and the plate suffers lateral displacements (out of plane) indicating the buckling occurrence. In plates an elastic buckling or an elastoplastic buckling can occur, depending on dimensional, constructive or operational aspects. Therefore, in the present work, the Constructal Design method was adopted to investigate the influence of the type and shape of the cutout in the plate buckling. To do so, by means the Finite Element Method (FEM), computational models were developed to simulate the elastic (linear) and elasto-plastic (nonlinear) plate buckling. Square and rectangular thin steel plates, simply supported in its four edges, with a centered cutout, were analyzed, being the objective function to maximize the buckling limit stress, avoiding the plate buckling occurrence. The square and rectangular plates have a ratio H/L (ratio between height and length of the plate) of 0.5 and 1.0, respectively. A value of 0.2 for the cutout volume fraction (ratio between the cutout volume and the total plate volume) was adopted for different types of cutout: diamond, longitudinal hexagonal, transversal hexagonal, elliptical, and rectangular. The cutout shape variations were produced by the H0/L0 degree of freedom (which relates the characteristic dimensions of the cutout). The results showed that the cutout shape variation has a fundamental influence in the plate buckling behavior, determining if the buckling is elastic or elasto-plastic, allowing the definition of a buckling stress limit curve for each studied cutout type. In addition, it was observed that the Constructal Design method conduct to the definition of optimal geometries, reaching buckling stress limit improvements around 100%.

Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the constructal design method / Lorenzini, Giulio; Helbig, Daniel; Da Silva, Caio Cesar Cardoso; De Vasconcellos Real, Mauro; Dos Santos, Elizaldo Domingues; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira. - In: INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY. - ISSN 0392-8764. - 34:Special Issue 1(2016), pp. S9-S20. [10.18280/ijht.34S102]

Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the constructal design method

LORENZINI, Giulio;
2016-01-01

Abstract

Thin steel plates-with or without cutouts-are structural components largely used in several engineering applications as buildings, bridges, ships, airplanes and automobiles. However, if an axial compressive load is imposed to these panels an undesired instability phenomenon can occur: buckling. At a certain load magnitude the limit stress is reached and the plate suffers lateral displacements (out of plane) indicating the buckling occurrence. In plates an elastic buckling or an elastoplastic buckling can occur, depending on dimensional, constructive or operational aspects. Therefore, in the present work, the Constructal Design method was adopted to investigate the influence of the type and shape of the cutout in the plate buckling. To do so, by means the Finite Element Method (FEM), computational models were developed to simulate the elastic (linear) and elasto-plastic (nonlinear) plate buckling. Square and rectangular thin steel plates, simply supported in its four edges, with a centered cutout, were analyzed, being the objective function to maximize the buckling limit stress, avoiding the plate buckling occurrence. The square and rectangular plates have a ratio H/L (ratio between height and length of the plate) of 0.5 and 1.0, respectively. A value of 0.2 for the cutout volume fraction (ratio between the cutout volume and the total plate volume) was adopted for different types of cutout: diamond, longitudinal hexagonal, transversal hexagonal, elliptical, and rectangular. The cutout shape variations were produced by the H0/L0 degree of freedom (which relates the characteristic dimensions of the cutout). The results showed that the cutout shape variation has a fundamental influence in the plate buckling behavior, determining if the buckling is elastic or elasto-plastic, allowing the definition of a buckling stress limit curve for each studied cutout type. In addition, it was observed that the Constructal Design method conduct to the definition of optimal geometries, reaching buckling stress limit improvements around 100%.
2016
Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the constructal design method / Lorenzini, Giulio; Helbig, Daniel; Da Silva, Caio Cesar Cardoso; De Vasconcellos Real, Mauro; Dos Santos, Elizaldo Domingues; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira. - In: INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY. - ISSN 0392-8764. - 34:Special Issue 1(2016), pp. S9-S20. [10.18280/ijht.34S102]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2809634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 12
social impact