Apart from its well-known role in regulating endothelial function, in mammals, nitric oxide (NO) is an important signaling molecule involved in many processes, regulating different biological functions. It has been demonstrated that NO plays a role in the physiology of the reproductive system, where it acts in controlling the activity of reproductive organs in both sexes. In the female of several animal species, experimental data suggest the presence of an intraovarian NO-generating system, which could be involved in the control of follicular development. The role of NO in regulating follicular atresia by apoptosis is still controversial, as a dual action depending mostly on its concentration has been documented. NO also displays positive effects on follicle development and selection related to angiogenic events and it could also play a modulatory role in steroidogenesis in ovarian cells. Both in monovulatory and poliovulatory species, the increase in PGE2 production induced by NO via a stimulatory effect on COX-2 activity appears to be a common ovulatory mechanism. Considerable evidence also exists to support an involvement of the NO/NO synthase system in the control of meiotic maturation of cumulus-oocyte complexes.
Nitric oxide in follicle development and oocyte competence / Basini, Giuseppina; Grasselli, Francesca. - In: REPRODUCTION. - ISSN 1470-1626. - 150:1(2015), pp. R1-R9. [10.1530/REP-14-0524]
Nitric oxide in follicle development and oocyte competence
BASINI, Giuseppina
;GRASSELLI, Francesca
2015-01-01
Abstract
Apart from its well-known role in regulating endothelial function, in mammals, nitric oxide (NO) is an important signaling molecule involved in many processes, regulating different biological functions. It has been demonstrated that NO plays a role in the physiology of the reproductive system, where it acts in controlling the activity of reproductive organs in both sexes. In the female of several animal species, experimental data suggest the presence of an intraovarian NO-generating system, which could be involved in the control of follicular development. The role of NO in regulating follicular atresia by apoptosis is still controversial, as a dual action depending mostly on its concentration has been documented. NO also displays positive effects on follicle development and selection related to angiogenic events and it could also play a modulatory role in steroidogenesis in ovarian cells. Both in monovulatory and poliovulatory species, the increase in PGE2 production induced by NO via a stimulatory effect on COX-2 activity appears to be a common ovulatory mechanism. Considerable evidence also exists to support an involvement of the NO/NO synthase system in the control of meiotic maturation of cumulus-oocyte complexes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.