Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As 2S 3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.
Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers / Coscelli, Enrico; Poli, Federica; Li, J.; Cucinotta, Annamaria; Selleri, Stefano. - In: IEEE PHOTONICS JOURNAL. - ISSN 1943-0655. - 7:3(2015), pp. 1-8. [10.1109/JPHOT.2015.2421436]
Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers
COSCELLI, Enrico;POLI, Federica;CUCINOTTA, Annamaria;SELLERI, Stefano
2015-01-01
Abstract
Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As 2S 3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.File | Dimensione | Formato | |
---|---|---|---|
07083701 (1).pdf
accesso aperto
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.