Vehicular data collection applications are emerging as an appealing technology to monitor urban areas, where a high concentration of connected vehicles with onboard sensors is a near future scenario. In this context, smartphones are, on one side, effective enablers of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) applications and, on the other side, highly sophisticated sensing platforms. In this paper, we introduce an effective and efficient system, denoted as D4V, to disseminate vehicle-related information and sensed data using smartphones as V2I devices. D4V relies on a Peer-to-Peer (P2P) overlay scheme, denoted as Distributed Geographic Table (DGT), which unifies the concepts of physical and virtual neighborhoods in a scalable and robust infrastructure for application-level services. First, we investigate the discovery procedure of the DGT overlay network, through analytical and simulation results. Then, we present and discuss an extensive simulation-based performance evaluation (considering relevant performance indicators) of the D4V system, in a 4G wireless communication scenario. The simulation methodology combines DEUS (an application-level simulation tool for the study of large-scale systems) with ns-3 (a well-known network simulator, which takes into account lower layers), in order to provide a D4V proof-of-concept. The observed results show that D4V-based information sharing among vehicles allows to significantly reduce risks and nuisances (e.g., due to road defects and congestions).
D4V: a peer-to-peer architecture for data dissemination in smartphone-based vehicular applications / Picone, Marco; Amoretti, Michele; Ferrari, Gianluigi; Zanichelli, Francesco. - In: PEERJ. COMPUTER SCIENCE.. - ISSN 2376-5992. - 1:e15(2015), pp. 1-31. [10.7717/peerj-cs.15]
D4V: a peer-to-peer architecture for data dissemination in smartphone-based vehicular applications
PICONE, Marco;AMORETTI, Michele;FERRARI, Gianluigi;ZANICHELLI, Francesco
2015-01-01
Abstract
Vehicular data collection applications are emerging as an appealing technology to monitor urban areas, where a high concentration of connected vehicles with onboard sensors is a near future scenario. In this context, smartphones are, on one side, effective enablers of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) applications and, on the other side, highly sophisticated sensing platforms. In this paper, we introduce an effective and efficient system, denoted as D4V, to disseminate vehicle-related information and sensed data using smartphones as V2I devices. D4V relies on a Peer-to-Peer (P2P) overlay scheme, denoted as Distributed Geographic Table (DGT), which unifies the concepts of physical and virtual neighborhoods in a scalable and robust infrastructure for application-level services. First, we investigate the discovery procedure of the DGT overlay network, through analytical and simulation results. Then, we present and discuss an extensive simulation-based performance evaluation (considering relevant performance indicators) of the D4V system, in a 4G wireless communication scenario. The simulation methodology combines DEUS (an application-level simulation tool for the study of large-scale systems) with ns-3 (a well-known network simulator, which takes into account lower layers), in order to provide a D4V proof-of-concept. The observed results show that D4V-based information sharing among vehicles allows to significantly reduce risks and nuisances (e.g., due to road defects and congestions).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.