We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based on two classes of dynamical behaviors characterized by different growth laws of the ordered domain size, namely logarithmic or power law, respectively. It is conjectured that the interplay between these dynamical classes is regulated by the same topological feature that governs the presence or the absence of a finite-temperature phase transition.
Phase ordering in disordered and inhomogeneous systems / Corberi, Federico; Zannetti, Marco; Lippiello, Eugenio; Burioni, Raffaella; Vezzani, Alessandro. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 91:6(2015), pp. 062122-062132. [10.1103/PhysRevE.91.062122]
Phase ordering in disordered and inhomogeneous systems
BURIONI, Raffaella;VEZZANI, Alessandro
2015-01-01
Abstract
We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based on two classes of dynamical behaviors characterized by different growth laws of the ordered domain size, namely logarithmic or power law, respectively. It is conjectured that the interplay between these dynamical classes is regulated by the same topological feature that governs the presence or the absence of a finite-temperature phase transition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.