In this paper, an ex vivo model for the study of the transcorneal permeation of drugs, based on porcine tissues, was evaluated. The setup is characterized by ease of realization, absence of O2 and CO2 bubbling and low cost; additionally, the large availability of porcine tissue permits a high throughput. Histological images showed the comparability between porcine and human corneas and confirmed the effectiveness of the isolation procedure. A new de-epithelization procedure based on a thermal approach was also set up to simulate cornea permeability in pathological conditions. The procedure did not affect the integrity of the underlying layers and allowed the characterization of the barrier properties of epithelium and stroma. Six compounds with different physicochemical properties were tested: fluorescein, atenolol, propranolol, diclofenac, ganciclovir and lidocaine. The model highlighted the barrier function played by epithelium toward the diffusion of hydrophilic compounds and the permselectivity with regard to more lipophilic molecules. In particular, positively charged compounds showed a significantly higher transcorneal permeability than negatively charged compounds. The comparability of results with literature data supports the goodness and the robustness of the model, especially taking into account the behavior of fluorescein, which is generally considered a marker of tissue integrity.
Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: histological and permeability evaluation / Pescina, Silvia; Govoni, Paolo; Potenza, Arianna; Padula, Cristina; Santi, Patrizia; Nicoli, Sara. - In: JOURNAL OF PHARMACEUTICAL SCIENCES. - ISSN 0022-3549. - 104:1(2015), pp. 63-71. [10.1002/jps.24231]
Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: histological and permeability evaluation
PESCINA, Silvia;GOVONI, Paolo;PADULA, Cristina;SANTI, Patrizia;NICOLI, Sara
2015-01-01
Abstract
In this paper, an ex vivo model for the study of the transcorneal permeation of drugs, based on porcine tissues, was evaluated. The setup is characterized by ease of realization, absence of O2 and CO2 bubbling and low cost; additionally, the large availability of porcine tissue permits a high throughput. Histological images showed the comparability between porcine and human corneas and confirmed the effectiveness of the isolation procedure. A new de-epithelization procedure based on a thermal approach was also set up to simulate cornea permeability in pathological conditions. The procedure did not affect the integrity of the underlying layers and allowed the characterization of the barrier properties of epithelium and stroma. Six compounds with different physicochemical properties were tested: fluorescein, atenolol, propranolol, diclofenac, ganciclovir and lidocaine. The model highlighted the barrier function played by epithelium toward the diffusion of hydrophilic compounds and the permselectivity with regard to more lipophilic molecules. In particular, positively charged compounds showed a significantly higher transcorneal permeability than negatively charged compounds. The comparability of results with literature data supports the goodness and the robustness of the model, especially taking into account the behavior of fluorescein, which is generally considered a marker of tissue integrity.File | Dimensione | Formato | |
---|---|---|---|
cornea post print.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.