Organocatalysis is shown to expand the classical reactivity pattern for conjugate addition reactions. It is demonstrated that the site selectivity can be extended from 1,4- to 1,6-additions for the enantioselective vinylogous additions of methyl-substituted vinylogous lactones to enals and 2,4-dienals. This novel reactivity is demonstrated for methyl-substituted olefinic azlactones and butyrolactones. Their synthetic potential is first highlighted by the development of the organocatalytic regioselective vinylogous 1,4-addition to enals which proceeds with a very high level of double-bond geometry control and excellent enantioselectivity. The concept is developed further for the unprecedented intermolecular enantioselective organocatalyzed vinylogous 1,6-addition to linear 2,4-dienals, by which the site selectivity of the process is extended from the β-position to the remote δ-position of the 2,4-dienal. The organocatalyst controls the newly generated stereocenter six bonds away from the stereocenter of the catalyst with a high level of enantiocontrol, and the products are obtained with full control of double-bonds configuration. The scope of these new reaction concepts is demonstrated for a series of aliphatic and aryl-substituted enals and 2,4-dienals undergoing enantioselective vinylogous reactions with methyl-substituted olefinic azlactones and butyrolactones. Furthermore, mechanistic considerations are presented which can account for the change from 1,4- to 1,6-selectivity. Finally, a number of different transformations of the optically active 1,4- and 1,6-addition products are demonstrated.

Beyond classical reactivity patterns: shifting from 1,4- to 1,6-additions in regio- and enantioselective organocatalyzed vinylogous reactions of olefinic lactones with enals and 2,4-dienals / Dell'Amico, Luca; Albrecht, Łukasz; Naicker, Tricia; Poulsen, Pernille H; Jørgensen, Karl Anker. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 135:21(2013), pp. 8063-8070. [10.1021/ja4029928]

Beyond classical reactivity patterns: shifting from 1,4- to 1,6-additions in regio- and enantioselective organocatalyzed vinylogous reactions of olefinic lactones with enals and 2,4-dienals

DELL'AMICO, LUCA;
2013-01-01

Abstract

Organocatalysis is shown to expand the classical reactivity pattern for conjugate addition reactions. It is demonstrated that the site selectivity can be extended from 1,4- to 1,6-additions for the enantioselective vinylogous additions of methyl-substituted vinylogous lactones to enals and 2,4-dienals. This novel reactivity is demonstrated for methyl-substituted olefinic azlactones and butyrolactones. Their synthetic potential is first highlighted by the development of the organocatalytic regioselective vinylogous 1,4-addition to enals which proceeds with a very high level of double-bond geometry control and excellent enantioselectivity. The concept is developed further for the unprecedented intermolecular enantioselective organocatalyzed vinylogous 1,6-addition to linear 2,4-dienals, by which the site selectivity of the process is extended from the β-position to the remote δ-position of the 2,4-dienal. The organocatalyst controls the newly generated stereocenter six bonds away from the stereocenter of the catalyst with a high level of enantiocontrol, and the products are obtained with full control of double-bonds configuration. The scope of these new reaction concepts is demonstrated for a series of aliphatic and aryl-substituted enals and 2,4-dienals undergoing enantioselective vinylogous reactions with methyl-substituted olefinic azlactones and butyrolactones. Furthermore, mechanistic considerations are presented which can account for the change from 1,4- to 1,6-selectivity. Finally, a number of different transformations of the optically active 1,4- and 1,6-addition products are demonstrated.
2013
Beyond classical reactivity patterns: shifting from 1,4- to 1,6-additions in regio- and enantioselective organocatalyzed vinylogous reactions of olefinic lactones with enals and 2,4-dienals / Dell'Amico, Luca; Albrecht, Łukasz; Naicker, Tricia; Poulsen, Pernille H; Jørgensen, Karl Anker. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 135:21(2013), pp. 8063-8070. [10.1021/ja4029928]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2785793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 120
social impact