Let M be a CR manifold of hypersurface type, which is Levi degenerate but also satisfying a k-nondegeneracy condition at all points. This might be only if dim M = 5 and if dim M = 5, then k= 2 at all points. We prove that for any five-dimensional, uniformly two-nondegenerate CR manifold M there exists a canonical Cartan connection, modeled on a suitable projective completion of the tube over the future light cone {z \in C^3 : (x_1)^2 + (x_2)^2 - (x_3)^2 = 0, x_3 > 0}. This determines a complete solution to the equivalence problem for this class of CR manifolds.
The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds / Medori, Costantino; A., Spiro. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 20:(2014), pp. 5602-5647. [10.1093/imrn/rnt129]
The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds
MEDORI, Costantino;
2014-01-01
Abstract
Let M be a CR manifold of hypersurface type, which is Levi degenerate but also satisfying a k-nondegeneracy condition at all points. This might be only if dim M = 5 and if dim M = 5, then k= 2 at all points. We prove that for any five-dimensional, uniformly two-nondegenerate CR manifold M there exists a canonical Cartan connection, modeled on a suitable projective completion of the tube over the future light cone {z \in C^3 : (x_1)^2 + (x_2)^2 - (x_3)^2 = 0, x_3 > 0}. This determines a complete solution to the equivalence problem for this class of CR manifolds.File | Dimensione | Formato | |
---|---|---|---|
27-2014-IntMathResNotices.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
401.61 kB
Formato
Adobe PDF
|
401.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.