n this article we study properly discontinuous actions on Hilbert manifolds giving new examples of complete Hilbert manifolds with nonnegative, respectively nonpositive, sectional curvature with infinite fundamental group. We also get examples of complete infinite dimensional Kähler manifolds with positive holomorphic sectional curvature and infinite fundamental group in contrastwith the finite dimensional case and we classify abelian groups acting linearly, isometrically and properly discontinuously on Stiefel manifolds. Finally, we classify homogeneous Hilbert manifolds with constant sectional curvature.

Properly discontinuous actions on Hilbert manifolds / Biliotti, Leonardo; Francesco, Mercuri. - In: BULLETIN BRAZILIAN MATHEMATICAL SOCIETY. - ISSN 1678-7544. - 45:3(2014), pp. 433-452. [10.1007/s00574-014-0057-7]

Properly discontinuous actions on Hilbert manifolds

BILIOTTI, Leonardo;
2014-01-01

Abstract

n this article we study properly discontinuous actions on Hilbert manifolds giving new examples of complete Hilbert manifolds with nonnegative, respectively nonpositive, sectional curvature with infinite fundamental group. We also get examples of complete infinite dimensional Kähler manifolds with positive holomorphic sectional curvature and infinite fundamental group in contrastwith the finite dimensional case and we classify abelian groups acting linearly, isometrically and properly discontinuously on Stiefel manifolds. Finally, we classify homogeneous Hilbert manifolds with constant sectional curvature.
2014
Properly discontinuous actions on Hilbert manifolds / Biliotti, Leonardo; Francesco, Mercuri. - In: BULLETIN BRAZILIAN MATHEMATICAL SOCIETY. - ISSN 1678-7544. - 45:3(2014), pp. 433-452. [10.1007/s00574-014-0057-7]
File in questo prodotto:
File Dimensione Formato  
document.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 227.61 kB
Formato Adobe PDF
227.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2761910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact