We investigate a natural approximation by subcritical Sobolev embeddings of the Sobolev quotient for the fractional Sobolev spaces $H^s$ for any $0<s<N/2$, using $\Gamma$-convergence techniques. We show that for such approximations, optimal functions always exist and exhibit a concentration effect of the $H^s$ energy at one point.
Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach / Palatucci, Giampiero; Adriano, Pisante; Yannick, Sire. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - XIV:3(2015), pp. 819-840. [10.2422/2036-2145.201302_006]
Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach
PALATUCCI, Giampiero;
2015-01-01
Abstract
We investigate a natural approximation by subcritical Sobolev embeddings of the Sobolev quotient for the fractional Sobolev spaces $H^s$ for any $0File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.