Studies in animal models and patients with epilepsy have suggested that basal ganglia circuits may control epileptic seizures and that striatal dopaminergic transmission may play a role in seizure modulation and interruption. Chromosome 20 [r(20)] syndrome is a well-defined chromosomal disorder characterized by epilepsy, mild-to-moderate mental retardation, and lack of recognizable dysmorphic features. Epilepsy is often the most important clinical manifestation of the syndrome, with prolonged episodes of nonconvulsive status epilepticus suggesting dysfunction in the seizure control system. We present the ictal blood oxygen level-dependent (BOLD) changes in brief seizures recorded by means of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration in a patient with [r(20)] syndrome. We observed ictal BOLD increments in a cortical-subcortical network involving substantia nigrastriatum and frontal cortex. At present, this is the first functional neuroimaging evidence of the involvement of the nigrostriatal system during ictal EEG discharges in [r(20)] syndrome supporting a role of the basal ganglia circuits in human epileptic seizures.
Ictal involvement of the nigrostriatal system in subtle seizures of ring chromosome 20 epilepsy / S., Meletti; A., Vignoli; Benuzzi, Francesca; Avanzini, Pietro; A., Ruggieri; M., Pugnaghi; P., Nichelli; M. P., Canevini. - In: EPILEPSIA. - ISSN 0013-9580. - 53:(2012), pp. e156-e160. [10.1111/j.1528-1167.2012.03568.x]
Ictal involvement of the nigrostriatal system in subtle seizures of ring chromosome 20 epilepsy.
BENUZZI, Francesca;AVANZINI, Pietro;
2012-01-01
Abstract
Studies in animal models and patients with epilepsy have suggested that basal ganglia circuits may control epileptic seizures and that striatal dopaminergic transmission may play a role in seizure modulation and interruption. Chromosome 20 [r(20)] syndrome is a well-defined chromosomal disorder characterized by epilepsy, mild-to-moderate mental retardation, and lack of recognizable dysmorphic features. Epilepsy is often the most important clinical manifestation of the syndrome, with prolonged episodes of nonconvulsive status epilepticus suggesting dysfunction in the seizure control system. We present the ictal blood oxygen level-dependent (BOLD) changes in brief seizures recorded by means of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration in a patient with [r(20)] syndrome. We observed ictal BOLD increments in a cortical-subcortical network involving substantia nigrastriatum and frontal cortex. At present, this is the first functional neuroimaging evidence of the involvement of the nigrostriatal system during ictal EEG discharges in [r(20)] syndrome supporting a role of the basal ganglia circuits in human epileptic seizures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.