Let F be a global function field of characteristic p>0, K/F an l-adic Lie extension unramified outside a finite set of places S and A/F an abelian variety. We study Sel_A(K)_l^\vee (the Pontrjagin dual of the Selmer group) and (under some mild hypotheses) prove that it is a finitely generated Z_l[[Gal(K/F)]]-module via generalizations of Mazur's Control Theorem. If Gal(K/F) has no elements of order l and contains a closed normal subgroup H such that Gal(K/F)/H \simeq Z_l, we are able to give sufficient conditions for Sel_A(K)_l^\vee to be finitely generated as Z_l[[H]]-module and, consequently, a torsion Z_l[[\Gal(K/F)]]-module. We deal with both cases l \neq p and l=p.

Control theorems for l-adic Lie extensions of global function fields / Bandini, Andrea; Maria, Valentino. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - XIV:4(2015), pp. 1065-1092. [10.2422/2036-2145.201304_001]

Control theorems for l-adic Lie extensions of global function fields

BANDINI, Andrea;
2015-01-01

Abstract

Let F be a global function field of characteristic p>0, K/F an l-adic Lie extension unramified outside a finite set of places S and A/F an abelian variety. We study Sel_A(K)_l^\vee (the Pontrjagin dual of the Selmer group) and (under some mild hypotheses) prove that it is a finitely generated Z_l[[Gal(K/F)]]-module via generalizations of Mazur's Control Theorem. If Gal(K/F) has no elements of order l and contains a closed normal subgroup H such that Gal(K/F)/H \simeq Z_l, we are able to give sufficient conditions for Sel_A(K)_l^\vee to be finitely generated as Z_l[[H]]-module and, consequently, a torsion Z_l[[\Gal(K/F)]]-module. We deal with both cases l \neq p and l=p.
2015
Control theorems for l-adic Lie extensions of global function fields / Bandini, Andrea; Maria, Valentino. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - XIV:4(2015), pp. 1065-1092. [10.2422/2036-2145.201304_001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2707095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact