Let $\Omega$ be an open bounded set of $\mathbb{R}^3$ and let $W$ and $V$ be two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. We analyze the asymptotic behavior as $\varepsilon \to 0$, in terms of $\Gamma$-convergence, of the following functional $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^pdx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u)dx+\frac{1}{\varepsilon}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2 \ \ \ (p>2), $$ where $u$ is a scalar density function and $Tu$ denotes its trace on $\partial\Omega$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.

Phase transition problems with the line tension effect: the super-quadratic case / Palatucci, Giampiero. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 19:10(2009), pp. 1765-1795. [10.1142/S0218202509003991]

Phase transition problems with the line tension effect: the super-quadratic case

PALATUCCI, Giampiero
2009-01-01

Abstract

Let $\Omega$ be an open bounded set of $\mathbb{R}^3$ and let $W$ and $V$ be two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. We analyze the asymptotic behavior as $\varepsilon \to 0$, in terms of $\Gamma$-convergence, of the following functional $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^pdx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u)dx+\frac{1}{\varepsilon}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2 \ \ \ (p>2), $$ where $u$ is a scalar density function and $Tu$ denotes its trace on $\partial\Omega$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.
2009
Phase transition problems with the line tension effect: the super-quadratic case / Palatucci, Giampiero. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 19:10(2009), pp. 1765-1795. [10.1142/S0218202509003991]
File in questo prodotto:
File Dimensione Formato  
Palatucci_M3AS_2009.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 833.53 kB
Formato Adobe PDF
833.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2688494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact