We study the $\Gamma$-convergence of the following functional ($p>2$) $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2, $$ where $\Omega$ is an open bounded set of $\mathbb{R}^3$ and $W$ and $V$ are two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. In the previous functional, we fix $a=2-p$ and $u$ is a scalar density function, $Tu$ denotes its trace on $\partial\Omega$, $d(x,\partial \Omega)$ stands for the distance function to the boundary $\partial\Om$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.
Γ-Convergence of some super quadratic functionals with singular weights / Palatucci, Giampiero; Yannick, Sire. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 266:3(2010), pp. 533-560. [10.1007/s00209-009-0584-x]
Γ-Convergence of some super quadratic functionals with singular weights
PALATUCCI, Giampiero;
2010-01-01
Abstract
We study the $\Gamma$-convergence of the following functional ($p>2$) $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2, $$ where $\Omega$ is an open bounded set of $\mathbb{R}^3$ and $W$ and $V$ are two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. In the previous functional, we fix $a=2-p$ and $u$ is a scalar density function, $Tu$ denotes its trace on $\partial\Omega$, $d(x,\partial \Omega)$ stands for the distance function to the boundary $\partial\Om$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.File | Dimensione | Formato | |
---|---|---|---|
Palatucci-Sire_Math.Z_2010.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
408.03 kB
Formato
Adobe PDF
|
408.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.