We study the $\Gamma$-convergence of the following functional ($p>2$) $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2, $$ where $\Omega$ is an open bounded set of $\mathbb{R}^3$ and $W$ and $V$ are two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. In the previous functional, we fix $a=2-p$ and $u$ is a scalar density function, $Tu$ denotes its trace on $\partial\Omega$, $d(x,\partial \Omega)$ stands for the distance function to the boundary $\partial\Om$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.

Γ-Convergence of some super quadratic functionals with singular weights / Palatucci, Giampiero; Yannick, Sire. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 266:3(2010), pp. 533-560. [10.1007/s00209-009-0584-x]

Γ-Convergence of some super quadratic functionals with singular weights

PALATUCCI, Giampiero;
2010-01-01

Abstract

We study the $\Gamma$-convergence of the following functional ($p>2$) $$ F_{\varepsilon}(u):=\varepsilon^{p-2}\!\int_{\Omega}\!|Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\!\int_{\Omega}\!W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}}\!\int_{\partial\Omega}\!V(Tu)d\mathcal{H}^2, $$ where $\Omega$ is an open bounded set of $\mathbb{R}^3$ and $W$ and $V$ are two non-negative continuous functions vanishing at $\alpha, \beta$ and $\alpha', \beta'$, respectively. In the previous functional, we fix $a=2-p$ and $u$ is a scalar density function, $Tu$ denotes its trace on $\partial\Omega$, $d(x,\partial \Omega)$ stands for the distance function to the boundary $\partial\Om$. We show that the singular limit of the energies $F_{\varepsilon}$ leads to a coupled problem of bulk and surface phase transitions.
2010
Γ-Convergence of some super quadratic functionals with singular weights / Palatucci, Giampiero; Yannick, Sire. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 266:3(2010), pp. 533-560. [10.1007/s00209-009-0584-x]
File in questo prodotto:
File Dimensione Formato  
Palatucci-Sire_Math.Z_2010.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 408.03 kB
Formato Adobe PDF
408.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2688493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact