Let $\Omega$ be a general, possibly non-smooth, bounded domain of $\mathbb{R}^N$, $N\geq 3$. Let $\displaystyle 2^{*}\!\!=\!{2N}\,\!/{(N-2)}$ be the critical Sobolev exponent. We study the following variational problem $$ S^{*}_{\varepsilon}=\sup\left \{ \int_{\Omega}|u|^{2^{*}\!-\varepsilon}dx: \int_{\Omega}|\nabla u|^{2}dx\leq 1, u=0 \ \text{on} \ \partial\Omega \right \}, $$ investigating its asymptotic behavior as $\varepsilon$ goes to zero, by means of $\gamp$-convergence techniques. We also show that sequences of maximizers $u_\varepsilon$ concentrate energy at one point $x_0\in \overline{\Omega}$.
Subcritical approximation of the Sobolev quotient and a related concentration result / Palatucci, Giampiero. - In: RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA. - ISSN 0041-8994. - 125:(2011), pp. 1-14. [10.4171/RSMUP/125-1]
Subcritical approximation of the Sobolev quotient and a related concentration result
PALATUCCI, Giampiero
2011-01-01
Abstract
Let $\Omega$ be a general, possibly non-smooth, bounded domain of $\mathbb{R}^N$, $N\geq 3$. Let $\displaystyle 2^{*}\!\!=\!{2N}\,\!/{(N-2)}$ be the critical Sobolev exponent. We study the following variational problem $$ S^{*}_{\varepsilon}=\sup\left \{ \int_{\Omega}|u|^{2^{*}\!-\varepsilon}dx: \int_{\Omega}|\nabla u|^{2}dx\leq 1, u=0 \ \text{on} \ \partial\Omega \right \}, $$ investigating its asymptotic behavior as $\varepsilon$ goes to zero, by means of $\gamp$-convergence techniques. We also show that sequences of maximizers $u_\varepsilon$ concentrate energy at one point $x_0\in \overline{\Omega}$.File | Dimensione | Formato | |
---|---|---|---|
Palatucci_Rend.Padova_2011.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
233.71 kB
Formato
Adobe PDF
|
233.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.