Let $\Omega$ be a general, possibly non-smooth, bounded domain of $\mathbb{R}^N$, $N\geq 3$. Let $\displaystyle 2^{*}\!\!=\!{2N}\,\!/{(N-2)}$ be the critical Sobolev exponent. We study the following variational problem $$ S^{*}_{\varepsilon}=\sup\left \{ \int_{\Omega}|u|^{2^{*}\!-\varepsilon}dx: \int_{\Omega}|\nabla u|^{2}dx\leq 1, u=0 \ \text{on} \ \partial\Omega \right \}, $$ investigating its asymptotic behavior as $\varepsilon$ goes to zero, by means of $\gamp$-convergence techniques. We also show that sequences of maximizers $u_\varepsilon$ concentrate energy at one point $x_0\in \overline{\Omega}$.

Subcritical approximation of the Sobolev quotient and a related concentration result / Palatucci, Giampiero. - In: RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA. - ISSN 0041-8994. - 125:(2011), pp. 1-14. [10.4171/RSMUP/125-1]

Subcritical approximation of the Sobolev quotient and a related concentration result

PALATUCCI, Giampiero
2011-01-01

Abstract

Let $\Omega$ be a general, possibly non-smooth, bounded domain of $\mathbb{R}^N$, $N\geq 3$. Let $\displaystyle 2^{*}\!\!=\!{2N}\,\!/{(N-2)}$ be the critical Sobolev exponent. We study the following variational problem $$ S^{*}_{\varepsilon}=\sup\left \{ \int_{\Omega}|u|^{2^{*}\!-\varepsilon}dx: \int_{\Omega}|\nabla u|^{2}dx\leq 1, u=0 \ \text{on} \ \partial\Omega \right \}, $$ investigating its asymptotic behavior as $\varepsilon$ goes to zero, by means of $\gamp$-convergence techniques. We also show that sequences of maximizers $u_\varepsilon$ concentrate energy at one point $x_0\in \overline{\Omega}$.
2011
Subcritical approximation of the Sobolev quotient and a related concentration result / Palatucci, Giampiero. - In: RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA. - ISSN 0041-8994. - 125:(2011), pp. 1-14. [10.4171/RSMUP/125-1]
File in questo prodotto:
File Dimensione Formato  
Palatucci_Rend.Padova_2011.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 233.71 kB
Formato Adobe PDF
233.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2688491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact