We deal with the solutions to nonlinear parabolic equations of the form $$ u_t-div a(x,t,Du)+g(x,t,u)=f(x,t) on \Omega_T=\Omega\times(-T,0), $$ under standard growth conditions on $g$ and $a$, with $f$ only assumed to be integrable to the power $\gamma > 1$. We prove general local decay estimates for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in rearrangement function spaces (Lebesgue, Orlicz, Lorentz) and non-rearrangement ones, up to Lorentz–Morrey spaces.
Nonlinear parabolic problems with lower order terms and related integral estimates / Agnese Di, Castro; Palatucci, Giampiero. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 75:11(2012), pp. 4177-4197. [10.1016/j.na.2012.03.007]
Nonlinear parabolic problems with lower order terms and related integral estimates
PALATUCCI, Giampiero
2012-01-01
Abstract
We deal with the solutions to nonlinear parabolic equations of the form $$ u_t-div a(x,t,Du)+g(x,t,u)=f(x,t) on \Omega_T=\Omega\times(-T,0), $$ under standard growth conditions on $g$ and $a$, with $f$ only assumed to be integrable to the power $\gamma > 1$. We prove general local decay estimates for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in rearrangement function spaces (Lebesgue, Orlicz, Lorentz) and non-rearrangement ones, up to Lorentz–Morrey spaces.File | Dimensione | Formato | |
---|---|---|---|
DiCastro-Palatucci_NonlinearAnal_2012.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
331.24 kB
Formato
Adobe PDF
|
331.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.