We deal with the solutions to nonlinear elliptic equations of the form $$ −div a(x,Du)+g(x,u)=f, $$ with $f$ being just a summable function, under standard growth conditions on $g$ and $a$. We prove general local decay estimates for level sets of the gradient of solutions in turn implying very general estimates in rearrangement and non-rearrangement function spaces, up to Lorentz–Morrey spaces. The results obtained are in clear accordance with the classical Gagliardo–Nirenberg interpolation theory.
Measure data problems, lower-order terms and interpolation effects / Agnese Di, Castro; Palatucci, Giampiero. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 193:2(2014), pp. 325-358. [10.1007/s10231-012-0277-7]
Measure data problems, lower-order terms and interpolation effects
PALATUCCI, Giampiero
2014-01-01
Abstract
We deal with the solutions to nonlinear elliptic equations of the form $$ −div a(x,Du)+g(x,u)=f, $$ with $f$ being just a summable function, under standard growth conditions on $g$ and $a$. We prove general local decay estimates for level sets of the gradient of solutions in turn implying very general estimates in rearrangement and non-rearrangement function spaces, up to Lorentz–Morrey spaces. The results obtained are in clear accordance with the classical Gagliardo–Nirenberg interpolation theory.File | Dimensione | Formato | |
---|---|---|---|
DiCastro-Palatucci_AMPA_2014.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
403.97 kB
Formato
Adobe PDF
|
403.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.