We study existence, unicity and other geometric properties of the minimizers of the energy functional $$ \|u\|^2_{H^s(\Omega)} + \int W(u) dx, $$ where $\|u\|^2_{H^s(\Omega)}$ denotes the total contribution from $\Omega$ in the $H^s$ norm of $u$, and $W$ is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space $\mathbb{R}^N$. The results collected here will also be useful for forthcoming papers, where the second and the third author will study the $\Gamma$-convergence and the density estimates for level sets of minimizers.
Local and global minimizers for a variational energy involving a fractional norm / Palatucci, Giampiero; Ovidiu, Savin; Enrico, Valdinoci. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 192:4(2013), pp. 673-718. [10.1007/s10231-011-0243-9]
Local and global minimizers for a variational energy involving a fractional norm
PALATUCCI, Giampiero;
2013-01-01
Abstract
We study existence, unicity and other geometric properties of the minimizers of the energy functional $$ \|u\|^2_{H^s(\Omega)} + \int W(u) dx, $$ where $\|u\|^2_{H^s(\Omega)}$ denotes the total contribution from $\Omega$ in the $H^s$ norm of $u$, and $W$ is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space $\mathbb{R}^N$. The results collected here will also be useful for forthcoming papers, where the second and the third author will study the $\Gamma$-convergence and the density estimates for level sets of minimizers.File | Dimensione | Formato | |
---|---|---|---|
Palatucci-Savin-Valdinoci_AMPA_2013.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
456.14 kB
Formato
Adobe PDF
|
456.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.