We study existence, unicity and other geometric properties of the minimizers of the energy functional $$ \|u\|^2_{H^s(\Omega)} + \int W(u) dx, $$ where $\|u\|^2_{H^s(\Omega)}$ denotes the total contribution from $\Omega$ in the $H^s$ norm of $u$, and $W$ is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space $\mathbb{R}^N$. The results collected here will also be useful for forthcoming papers, where the second and the third author will study the $\Gamma$-convergence and the density estimates for level sets of minimizers.

Local and global minimizers for a variational energy involving a fractional norm / Palatucci, Giampiero; Ovidiu, Savin; Enrico, Valdinoci. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 192:4(2013), pp. 673-718. [10.1007/s10231-011-0243-9]

Local and global minimizers for a variational energy involving a fractional norm

PALATUCCI, Giampiero;
2013-01-01

Abstract

We study existence, unicity and other geometric properties of the minimizers of the energy functional $$ \|u\|^2_{H^s(\Omega)} + \int W(u) dx, $$ where $\|u\|^2_{H^s(\Omega)}$ denotes the total contribution from $\Omega$ in the $H^s$ norm of $u$, and $W$ is a double-well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn equation on the entire space $\mathbb{R}^N$. The results collected here will also be useful for forthcoming papers, where the second and the third author will study the $\Gamma$-convergence and the density estimates for level sets of minimizers.
2013
Local and global minimizers for a variational energy involving a fractional norm / Palatucci, Giampiero; Ovidiu, Savin; Enrico, Valdinoci. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 192:4(2013), pp. 673-718. [10.1007/s10231-011-0243-9]
File in questo prodotto:
File Dimensione Formato  
Palatucci-Savin-Valdinoci_AMPA_2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 456.14 kB
Formato Adobe PDF
456.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2688486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 111
social impact