We consider nonlinear parabolic equations of the type $$ u_t - \text{div}\, a(x, t, Du)= f(x,t) \ \, \text{on} \ \Omega_T = \Omega\times (-T,0), $$ under standard growth conditions on $a$, with $f$ only assumed to be integrable. We prove general decay estimates up to the boundary for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in Lebesgue and Lorentz spaces. Assuming only that the involved domains satisfy a mild exterior capacity density condition, we provide global regularity results.
Global estimates for nonlinear parabolic equations / Baroni, Paolo; Agnese Di Castro, ; Palatucci, Giampiero. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 13:1(2013), pp. 163-195. [10.1007/s00028-013-0174-6]
Global estimates for nonlinear parabolic equations
Paolo Baroni;PALATUCCI, Giampiero
2013-01-01
Abstract
We consider nonlinear parabolic equations of the type $$ u_t - \text{div}\, a(x, t, Du)= f(x,t) \ \, \text{on} \ \Omega_T = \Omega\times (-T,0), $$ under standard growth conditions on $a$, with $f$ only assumed to be integrable. We prove general decay estimates up to the boundary for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in Lebesgue and Lorentz spaces. Assuming only that the involved domains satisfy a mild exterior capacity density condition, we provide global regularity results.File | Dimensione | Formato | |
---|---|---|---|
Baroni-DiCastro-Palatucci_JEE_2013.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
395.83 kB
Formato
Adobe PDF
|
395.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.