We consider nonlinear parabolic equations of the type $$ u_t - \text{div}\, a(x, t, Du)= f(x,t) \ \, \text{on} \ \Omega_T = \Omega\times (-T,0), $$ under standard growth conditions on $a$, with $f$ only assumed to be integrable. We prove general decay estimates up to the boundary for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in Lebesgue and Lorentz spaces. Assuming only that the involved domains satisfy a mild exterior capacity density condition, we provide global regularity results.

Global estimates for nonlinear parabolic equations / Baroni, Paolo; Agnese Di Castro, ; Palatucci, Giampiero. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 13:1(2013), pp. 163-195. [10.1007/s00028-013-0174-6]

Global estimates for nonlinear parabolic equations

Paolo Baroni;PALATUCCI, Giampiero
2013-01-01

Abstract

We consider nonlinear parabolic equations of the type $$ u_t - \text{div}\, a(x, t, Du)= f(x,t) \ \, \text{on} \ \Omega_T = \Omega\times (-T,0), $$ under standard growth conditions on $a$, with $f$ only assumed to be integrable. We prove general decay estimates up to the boundary for level sets of the solutions $u$ and the gradient $Du$ which imply very general estimates in Lebesgue and Lorentz spaces. Assuming only that the involved domains satisfy a mild exterior capacity density condition, we provide global regularity results.
2013
Global estimates for nonlinear parabolic equations / Baroni, Paolo; Agnese Di Castro, ; Palatucci, Giampiero. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 13:1(2013), pp. 163-195. [10.1007/s00028-013-0174-6]
File in questo prodotto:
File Dimensione Formato  
Baroni-DiCastro-Palatucci_JEE_2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 395.83 kB
Formato Adobe PDF
395.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2688484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact